CE30 - Physique de la matière condensée et de la matière diluée

Etude par résonance magnétique de la diffusion gazeuse dans des matériaux nanoporeux: effet des interactions gaz-paroi – MARGIN

Etudes par RMN de diffusion gazeuse dans des matériaux nanoporeux : influence des interactions avec les parois

L'objectif principal du projet est l'étude de l'influence du potentiel d'interaction des atomes d'un gaz avec des parois sur la cinétique du gaz, habituellement négligée dans les modèles standard de diffusion.

La diffusivité des gaz peut être étudiée par des techniques de résonance magnétique nucléaire (RMN)

La diffusivité des gaz dans les matériaux nanoporeux en conditionne l'efficacité pour la séparation et le stockage, ou encore la catalyse, ainsi que la pertinence pour l'étude des phases superfluides d'hélium en milieu confiné car ces systèmes se comportent comme des gaz de quasi-particules à très basse température. Plus généralement, les mesures de diffusion ou écoulement de gaz et liquides sont couramment utilisées pour caractériser les matériaux poreux. La résonance magnétique nucléaire (RMN) fournit un ensemble de méthodes non-invasives pour mesurer le transport dans les fluides au sein de divers poreux, et la mesure par RMN de la diffusion de gaz est indispensable à la caractérisation du libre parcours moyen dans les aérogels, de la taille des pores et de la structure.<br />Une compréhension précise des processus en jeu lors de mesures de diffusion est essentielle pour interpréter les mesures de diffusion par RMN dans les poreux. Les modèles habituellement utilisés à température ambiante considèrent la présence de couche(s) adsorbées et la structure spatiale des pores, et échouent pourtant à expliquer les observations faites à basse température car ils négligent l’influence de l’attraction des parois sur les trajectoires atomiques dans le gaz. Des mesures préliminaires de diffusion à 4.2 K d’3He gazeux au laboratoire MRS dans un aérogel orienté ont montré une différence importante avec le comportement attendu, attribuée à une attraction accrue à basse température qui augmente la densité et affecte les trajectoires atomiques près des parois.

Les modèles théoriques et les données expérimentales manquent pour ces situations, et le projet MARGIN est destiné à élucider ces questions. Il vise à distinguer entre le confinement près des parois et l’adsorption par des mesures RMN de diffusion gazeuse dans une série de poreux bien caractérisés, dans une large gamme de températures et densités de gaz afin d’explorer différent régimes d’adsorption (Henry, Langmuir, BET). L'3He sera utilisé pour des mesures RMN de coefficient de diffusion apparent dans des systèmes poreux modèles (des aérogels anisotropes, des nanopoudres, etc.) à basse température (MRS Lab, Kazan) et 300 K (LKB, Paris) où le gaz sera hyperpolarisé par pompage optique laser afin d'atteindre la sensibilité nécessaire pour les mesures à basse densité. Des mesures complémentaires de diffusion de xénon au-dessus de 170 K seront faites dans les mêmes matériaux pour tester la diffusion d’atomes plus fortement attirés par les parois que 3He. Des simulations numériques de la diffusion gazeuse et de la dynamique RMN seront systématiquement menées pour valider l’interprétation des données et en tirer des conclusions fortes. MARGIN vise à démontrer que la RMN peut devenir une mesure de référence de la diffusion gazeuse dans les poreux, au lieu d’être limitée à la mesure de transport et de relaxation dans les liquides dans ces matériaux.
Au-delà de ses objectifs principaux, MARGIN fournira un ensemble de résultats qui pourraient être utiles à certaines études relevant de questions ouvertes en physique fondamentale. L’une d’elle concerne la théorie récemment reconsidérée de la relaxation magnétique et des déplacements de fréquences induits par le mouvement atomique dans les fluides, au-delà de l’approche standard de Redfield. Les mesures RMN prévues dans des échantillons avec confinement très anisotrope pourraient fournir un ensemble de données pour tester ces théories, motivées par de nouvelles générations de mesures de moment dipolaire anormal (EDM).

Les principaux résultats sont annoncés sur le site du projet.

Les perspectives sont évoquées sur le site du projet.

La liste des publications est tenue à jour sur le site du projet.

La diffusivité des gaz dans les matériaux nanoporeux en conditionne l'efficacité pour la séparation et le stockage, ou encore la catalyse, ainsi que la pertinence pour l'étude des phases superfluides d'hélium en milieu confiné car ces systèmes se comportent comme des gaz de quasi-particules à très basse température. Plus généralement, les mesures de diffusion ou écoulement de gaz et liquides sont couramment utilisées pour caractériser les matériaux poreux. La résonance magnétique nucléaire (RMN) fournit un ensemble de méthodes non-invasives pour mesurer le transport dans les fluides au sein de divers poreux, et la mesure par RMN de la diffusion de gaz est indispensable à la caractérisation du libre parcours moyen dans les aérogels, de la taille des pores et de la structure.
Une compréhension précise des processus en jeu lors de mesures de diffusion est essentielle pour interpréter les mesures de diffusion par RMN dans les poreux. Les modèles habituellement utilisés à température ambiante considèrent la présence de couche(s) adsorbées et la structure spatiale des pores, et échouent pourtant à expliquer les observations faites à basse température car ils négligent l’influence de l’attraction des parois sur les trajectoires atomiques dans le gaz. Des mesures préliminaires de diffusion à 4.2 K d’3He gazeux au laboratoire MRS dans un aérogel orienté ont montré une différence importante avec le comportement attendu, attribuée à une attraction accrue à basse température qui augmente la densité et affecte les trajectoires atomiques près des parois.
Les modèles théoriques et les données expérimentales manquent pour ces situations, et le projet MARGIN est destiné à élucider ces questions. Il vise à distinguer entre le confinement près des parois et l’adsorption par des mesures RMN de diffusion gazeuse dans une série de poreux bien caractérisés, dans une large gamme de températures et densités de gaz afin d’explorer différent régimes d’adsorption (Henry, Langmuir, BET). L'3He sera utilisé pour des mesures RMN de coefficient de diffusion apparent dans des systèmes poreux modèles (des aérogels anisotropes, des nanopoudres, etc.) à basse température (MRS Lab, Kazan) et 300 K (LKB, Paris) où le gaz sera hyperpolarisé par pompage optique laser afin d'atteindre la sensibilité nécessaire pour les mesures à basse densité. Des mesures complémentaires de diffusion de xénon au-dessus de 170 K seront faites dans les mêmes matériaux pour tester la diffusion d’atomes plus fortement attirés par les parois que 3He. Des simulations numériques de la diffusion gazeuse et de la dynamique RMN seront systématiquement menées pour valider l’interprétation des données et en tirer des conclusions fortes. MARGIN vise à démontrer que la RMN peut devenir une mesure de référence de la diffusion gazeuse dans les poreux, au lieu d’être limitée à la mesure de transport et de relaxation dans les liquides dans ces matériaux.
Au-delà de ses objectifs principaux, MARGIN fournira un ensemble de résultats qui pourraient être utiles à certaines études relevant de questions ouvertes en physique fondamentale. L’une d’elle concerne la théorie récemment reconsidérée de la relaxation magnétique et des déplacements de fréquences induits par le mouvement atomique dans les fluides, au-delà de l’approche standard de Redfield. Sur ce sujet, les mesures RMN prévues dans des échantillons avec confinement très anisotrope pourraient fournir un ensemble de données pour tester ces théories, qui ont été motivées par de nouvelles générations de mesures de moment dipolaire anormal (EDM).

Coordination du projet

Pierre-Jean NACHER (Laboratoire Kastler Brossel)

L'auteur de ce résumé est le coordinateur du projet, qui est responsable du contenu de ce résumé. L'ANR décline par conséquent toute responsabilité quant à son contenu.

Partenaire

LKB Laboratoire Kastler Brossel
MRS Lab Kazan Federal University, Institute of Physics / Scientific-and-research laboratory of Magnetic Radiospectroscopy and Quantum Electronics (MRS Lab)

Aide de l'ANR 210 349 euros
Début et durée du projet scientifique : janvier 2020 - 36 Mois

Liens utiles

Explorez notre base de projets financés

 

 

L’ANR met à disposition ses jeux de données sur les projets, cliquez ici pour en savoir plus.

Inscrivez-vous à notre newsletter
pour recevoir nos actualités
S'inscrire à notre newsletter