Urgent news
Blanc SIMI 4 - Blanc - SIMI 4 - Physique

Non-Linear waves and turbulence in stratified and rotating fluids – ONLITUR

Non-linear waves and turbulence in rotating and stratified flows

Non-linear waves and turbulence in rotating and stratified flows

Enjeux et objectif

L’objectif de ce projet ANR blanc est de réunir l’expertise scientifique des 2 partenaires (Laboratoire FAST à Orsay et Laboratoire de Physique à l’ENS Lyon) dans le domaine des ondes non-linéaires et de la turbulence dans les écoulements tournants et stratifiés.

L’objectif de ce projet ANR blanc est de réunir l’expertise scientifique des 2 partenaires (Laboratoire FAST à Orsay et Laboratoire de Physique à l’ENS Lyon) dans le domaine des ondes non-linéaires et de la turbulence dans les écoulements tournants et stratifiés.

Les resultats sont décrits dans le rapport ci-joint.

Côté FAST (partenaire 1), ce projet va évoluer dans les prochains mois vers l’étude de l’interaction entre modes d’inertie, par des forçages directement inspirés de ceux présents dans les écoulements planétaires : libration et précession. Ce type de forçage devrait permettre d’aborder les aspects théoriques décrits dans les tasks 3 et 4 du projet.

Côté ENS Lyon (partenaire 2), le projet a déjà commencé à évoluer, au cours de l'été, vers la mise au point d'un système couplé PIV/LIF pour l'observation du mélange créé dans le milieu stratifié par les ondes internes. Il s'agit de la suite logique de l'étude démarrée sur l'instabilité paramétrique subharmonique, dans la mesure où cette instabilité, par sa propension à transférer de l'énergie vers les petites échelles, peut contribuer aux phénomènes de mélange. Il s'agit cependant d'un défi technique, puisque l'utilisation de la LIF (Fluorescence Induite par Laser) dans un milieu continument stratifié n'a jamais été développée, à cause du faible rapport signal sur bruit et des difficultés liées aux problèmes de calibration. Nous sommes cependant confiants qu'une optimisation des conditions de travail, associée à une recherche de maximisation des effets de mélange, conduira à des résultats intéressants. Ce projet est mené à bien par Baptiste Bourget, actuellement en 2e année de thèse.

Les 5 articles suivants citent le projet ANR ONLITUR dans les acknowledgments.
L’article [1] constitue une collaboration entre les 2 partenaires de ce projet.

Articles publiés
[1] G. Bordes, F. Moisy, T. Dauxois, P.-P. Cortet , Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid, Phys Fluids 24, 014105 (janvier 2012).
[2] S. Joubaud, J. Munroe, P. Odier, T. Dauxois, Experimental parametric subharmonic instability in stratified fluids, Phys. Fluids 24, 041703 (avril 2012).
[3] J. Boisson, D. Cébron, F. Moisy, P.-P. Cortet, Earth rotation prevents exact solid body rotation of fluids in the laboratory, EPL 98, 59002 (mai 2012).
[4] J. Boisson, C. Lamriben, L.R.M. Maas, P.-P. Cortet, Inertial waves and modes excited by the libration of a rotating cube, F. Moisy, Phys. Fluids 24, 076602 (juillet 2012)

Articles acceptés
[5] G. Bordes, A. Venaille, S. Joubaud, P. Odier, T. Dauxois, Experimental observation of a strong mean flow induced by internal gravity waves, soumis à Phys. Fluids (soumis en mars 2012, accepté en juillet 2012)

Submission summary

The present project aims to investigate experimentally several aspects of nonlinear waves and turbulence in rotating or stratified flows. The main objective is to develop simple and well-controlled experiments in order to explore and characterize some of the main physical mechanisms at play in geophysical flows involving transport, mixing and turbulence in the ocean. The idealized flow configurations proposed here include self-interaction of single inertial or internal wave beams, the ensuing generation of mean flows, the mixing induced by wave breaking, and the transition to wave turbulence. Mixing and transport of density and heat, and their role in the global thermal equilibrium of the ocean, as well as mixing and transport of pollutant and biochemical components are among the key issues addressed by the present project.

The project is driven by two partner laboratories, Fluides Automatique et Systèmes Thermiques - FAST (Université Paris-Sud, Orsay) and Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon. Both laboratories are recognized for their expertise in rotating and stratified flows, respectively, as well as in the advanced experimental methods to investigate these flows, such as Particle Image Velocimetry (PIV), Laser Induced Fluorescence (LIF) and Synthetic Schlieren. A set of laboratory experiments, based on the rotating platform “Gyroflow” at Orsay, and the novel wave generator used in the stratified channels at Lyon, are proposed to address experimentally the elementary processes at work in some geophysical flows.

Waves propagating in rotating or stratified fluids (i.e. inertial or internal waves, respectively) possess similar unusual dispersion relations, and therefore share several properties, in their generation, propagation and reflection. Combined rotation and stratification effects are at play in most geophysical flows. However, these wave systems differ significantly regarding a number of nonlinear behaviors, such as mean transport and instabilities. These similarities and differences provide an original perspective to the combined study that we propose in this project, where the complementarity of our respective expertise will form the basis of our collaboration. Considering separately and comparing the rotating and stratified systems, we expect to gain more insight into the elementary processes at work in the atmosphere and the ocean.

The experimental approach presents several advantages for this project: (i) numerical simulations are very demanding due to the wide range of temporal scales, between the fast waves and the slow nonlinear effects; (ii) recent advances in optical measurements, including Particle Image Velocimetry (PIV), make laboratory experiments particularly interesting in terms of temporal and spatial resolution. In the case of rotating fluid, a stereoscopic PIV system will be developed, allowing us to probe the 3D features inherent to rotating systems. In the case of stratified fluid, the PIV/Schlieren or PIV/LIF combinations will give simultaneous access to velocity and density fields, whose interaction is at the heart of many geophysical and environmental physical processes. The spatial resolution of our devices will allow measurements of turbulent quantities, such as wave-induced turbulent viscosities and diffusivities and spatio-temporal spectra. Based on these tools, we will be able to study several aspects of the interaction between inertial/internal waves and turbulence, a subject largely unexplored quantitatively to date.

Project coordination

Frédéric Moisy (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - DELEGATION REGIONALE ILE-DE-FRANCE SECTEUR PARIS B)

The author of this summary is the project coordinator, who is responsible for the content of this summary. The ANR declines any responsibility as for its contents.

Partnership

FAST CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - DELEGATION REGIONALE ILE-DE-FRANCE SECTEUR PARIS B
Phys - ENSL CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - DELEGATION REGIONALE RHONE-AUVERGNE

Help of the ANR 272,960 euros
Beginning and duration of the scientific project: September 2011 - 36 Months

Useful links

Explorez notre base de projets financés

 

 

ANR makes available its datasets on funded projects, click here to find more.

Sign up for the latest news:
Subscribe to our newsletter