CE31 - Physique Subatomique, Sciences de l'Univers, Structure et Histoire de la Terre

Ensemble Cible-Source pour la Production d'Ions de Courte Durée de Vie – TULIP

TULIP : Ensembles Cible-Source pour la Production d'Ions de Courte Durée de Vie

L’étude des noyaux exotiques est une des principales voies de recherche en physique nucléaire qui ouvre la possibilité à des découvertes d’ordre mondial. Le projet TULIP a pour ambition d’étendre à court terme les possibilités d’études en recherche subatomique par la création de nouveaux faisceaux d’ions radioactifs (RIB) sur le site du Grand Accélérateur National d’Ions Lourds (GANIL) situé à Caen.

Vitesse et efficacité pour la production d’ions exotiques de courte durée de vie

Vitesse et efficacité sont essentielles et seront optimisées pour produire dans un premier temps des RIB d’alcalins de courte durée de vie (dizaines de millisecondes) et dans un second temps pour progresser vers la production de RIB métalliques dans la région du 100Sn. Ces dispositifs sont conçus pour fonctionner dans des environnements extrêmes (fortes températures, forts débits de dose), et leur tenue dépend de la capacité des matériaux et de leur combinaison à résister à ces conditions. Une conception de pointe associant des techniques robustes et innovantes permettra de produire des RIB à partir de réactions nucléaires de fusion-évaporation.

Des matériaux de nanotechnologie innovants, des développements de cibles pour les environnements hostiles et des combinaisons techniques originales sont développés et testés hors-ligne, lors d’expériences sur banc d’essais au GANIL. Une fois au point, les systèmes sont testés en-ligne, à l’aide des faisceaux de la plateforme ALTO à IJCLab (Orsay) qui permettent la production d’ions métalliques à partir de réactions de fusion-évaporation. Chaque aspect du projet, réactions nucléaires, cibles, matériaux pour la cavité, thermo-, mécano- et électro- technologies sont abordés individuellement puis progressivement assemblés au cours d’un programme de développement expérimental.

Les expériences de réactions nucléaires de fusion-évaporation ont été menées avec réussite sur la plateforme ALTO et les taux de plusieurs noyaux radioactifs a été quantifiés. Les expériences d’irradiation permettant de caractériser les comportements des matériaux par des mesures d’implantation et relâchement ont fourni des résultats encourageants quant à l’utilisation de nano-matériaux dans ces environnements extrêmes. Des études sur banc d’essai ont apporté les premières preuves de l’efficacité du principe d’extraction rapide des ions, confortant ainsi les ambitions de production de RIB de courte durée de vie.

La nature de ces ensembles cibles-sources pourrait à court terme ouvrir la voie à des expériences ambitieuses en physique subatomique à SPIRAL1/GANIL, en préliminaire à des expériences de SPIRAL2/DESIR visant des noyaux très exotiques, observables uniquement au prix d’une efficacité de production exceptionnelle.

..bientôt disponible

The study of exotic nuclei, or short-lived radioactive nuclear systems, is one of the main avenues of research with a high potential for discoveries worldwide, in modern physics. The production of these systems, in the form of ions, is an essential pre-requisite to advance our understanding of the subatomic world. The national flagship for radioactive ion beam production is the SPIRAL facility and the SPIRAL2 ESFRI roadmap project, based at the Grand Accélerateur National d’Ions Lourds (GANIL) in Caen [1]. The Target Ion Source for Short-Lived Isotope Production (TuLIP) project aims to enhance the near-term nuclear physics research possibilities by creating unique radioactive ion beams for ambitious subatomic experiments at GANIL. This collaborative effort between GANIL and the Institut de Physique Nucléaire in Orsay (IPN) will explore fusion-evaporation nuclear reactions in a new Target-Ion Source System, associated with innovative nano-structured materials specifically developed for nuclear physics research. In-beam tests of common R&D will be carried out using the accelerated tandem beams of the Transnational Access facility ALTO [2], at the IPN. This is a short-term project complementary to other on-going SPIRAL developments and could provide an essential stepping-stone to facilitate the launch of the emblematic research program dedicated to first observations of exotic nuclei.

The first prototype could make post-accelerated alkali radioactive ion beams for near-term experiments a reality by 2021, with low energy metallic beams by 2023 on success of a second R&D prototype. Selective laser-ionization will be investigated at ALTO in 2020 to explore metallic ion production with the first prototype. Results of this work will be openly presented at conferences and appear in peer-reviewed papers. It is expected to benefit a wide community of physicts and stimulate unique physics opportunities.

One of the most promising regions for new physics focusses on the unusual symmetry present in the 100Sn nucleus. This self-conjugate doubly magic nucleus, composed of 50 protons (Z) and 50 neutrons (N) is the most exotic symmetrical nucleus of this type that be created. We aim to produce short-lived radioactive metallic ions around N=Z=50, and this will be our marker of success.

[1] pro.ganil-spiral2.eu/spiral2
[2]http://ipnwww.in2p3.fr/installation-ALTO, ENSAR2 EU HORIZON2020, contrat n°654002

Coordinateur du projet

Madame Marion MacCormick (Institut de Physique Nucléaire d'Orsay)

L'auteur de ce résumé est le coordinateur du projet, qui est responsable du contenu de ce résumé. L'ANR décline par conséquent toute responsabilité quant à son contenu.

Partenaire

IPNO Institut de Physique Nucléaire d'Orsay
GANIL Grand accélérateur national d'ions lourds

Aide de l'ANR 419 385 euros
Début et durée du projet scientifique : septembre 2019 - 48 Mois

Liens utiles

Explorez notre base de projets financés

 

 

L’ANR met à disposition ses jeux de données sur les projets, cliquez ici pour en savoir plus.

Inscrivez-vous à notre newsletter
pour recevoir nos actualités
S'inscrire à notre newsletter