DS04 - Vie, santé et bien-être

Integrated magnetic probes for neuronal current imaging. – NeuroTMR

Submission summary

Neuronal activity is based on charge transfers, which create electric potentials and ionic currents. These currents are generating magnetic fields which are detectable. These low-frequency magnetic fields pass through biological tissues without significant distortion, thus enabling efficient, remote interaction with devices inside a biological system. Previously, we have realized the first experimental proof of concept of locally recording the activity of neuronal networks in vivo with a new type of tool based on spin electronics magnetic sensors. To realize single-event recordings at neuron scale, we need to improve the sensor sensitivity and to co-integrate the electronics with the sensor for an improved form factor and signal integrity. To achieve this, in this project, we will use very low-noise Tunnel Magneto Resistance sensor and incorporate all relevant electronics directly onto the probe. The resulting new tool will open the field of magnetophysiology to understand the mechanisms of neuronal information transmission by realizing a mapping of the ionic flows in the neuropil, including vectorial information and multi-neurons simultaneous recordings, paving the way for durable implants, possibly for brain-machine interface.

Project coordination

Myriam PANNETIER LECOEUR (Service de physique de l'état condensé)

The author of this summary is the project coordinator, who is responsible for the content of this summary. The ANR declines any responsibility as for its contents.

Partner

SPEC Service de physique de l'état condensé
Stuttgart University Institute of Smart Sensors
ESI Enrst Strüngmann Institute

Help of the ANR 536,357 euros
Beginning and duration of the scientific project: - 36 Months

Useful links

Explorez notre base de projets financés

 

 

ANR makes available its datasets on funded projects, click here to find more.

Sign up for the latest news:
Subscribe to our newsletter