Flash Info
Stratégie nationale PEPR Produits biosourcés et biotechnologies industrielles - Carburants durables

Machine Learning methodologies for accelerated and predictive atomic scale simulations of the transformation of biosourced molecules

MAMABIO

Mots-clés : Machine Learning, calcul DFT, dynamique moléculaire, potentiels ML, variables collectives, infra-rouge, chimiométrie, déshydratation, modèles cinétiques, zéolithes, alumine, butanols

Résumé

Reactions of transformation of biosourced molecules are a key player in the current energy transition. The MAMABIO project aims at proposing accelerated numerical methodologies for building kinetic models of high predictive value, to develop in fine efficient biomass transformation processes. We choose butanol dehydration reactions catalyzed by zeolites and alumina as a preferred case study. The project is organized in 3 tasks:

 

Task 1. Machine Learning (ML)-accelerated accurate rate constants calculations from first principles. Advanced ML tools are currently developed and will be combined to: i) calculate the energy of the targeted complex chemical system quickly and accurately, thanks to machine learning potentials derived from high-level random phase approximations (RPA) ab initio calculations, making use of machine learning perturbation theory; ii) identify most relevant collective variables that are needed to compute free energy profiles, estimate the most probable transition pathway, and calculate accurate rate constants thanks to the adaptive multilevel splitting (AMS) algorithm.

 

 Task 2. Transient kinetic data from operando spectroscopy and chemometrics. Experimental data are gathered thanks to operando infrared spectroscopy. Chemometric analysis of the time-resolved spectra is currently being performed. Transient conditions will allow disentangling and identifying them as active, spectator or poison species. Then, quantitative thermokinetic parameters will be assessed by Multivariate Curve Resolution analysis of the spectra recorded in transient conditions. Results obtained so far are highly promising.   

 

Task 3. Construction of predictive kinetic models. All rate equations for elementary steps unraveled by simulations (task 1) and experiments (task 2) will be integrated to deduce the formation rate of products (ethers, alkenes, linear and branched), as a function of time and operating conditions. Sensitivity analyses will reveal the key parameters that influence activity/selectivity and will yield series of kinetic models, ranging from mostly empirical models to nearly fully ab initio-based models. The best models will be selected using a goodness-of-fit criteria.

 

L'auteur de ce résumé est le coordinateur du projet, qui est responsable du contenu de ce résumé. L'ANR décline par conséquent toute responsabilité quant à son contenu.

Informations générales

Acronyme projet : MAMABIO
Référence projet : 22-PEBB-0009
Région du projet : Auvergne-Rhône-Alpes
Discipline : 2 - SMI
Aide PIA : 2 251 132 €
Début projet : mai 2023
Fin projet : décembre 2028

Coordination du projet : Céline CHIZALLET
Email : celine.chizallet@ifpen.fr

Consortium du projet

Etablissement coordinateur : IFP Energies Nouvelles
Partenariat : Université de Lorraine, Ecole Nationale des Ponts et Chaussées, Université de Caen Normandie, CNRS Centre Est (Vandoeuvre), CNRS Normandie (Caen)

Liens utiles

Explorez notre base de projets financés

 

 

L’ANR met à disposition ses jeux de données sur les projets, cliquez ici pour en savoir plus.

Inscrivez-vous à notre newsletter
pour recevoir nos actualités
S'inscrire à notre newsletter