Blanc SIMI 6 - Sciences de l'information, de la matière et de l'ingénierie : Système Terre, environnement, risques

Mise à l'échelle de modèles élastiques géologiques pour la sismologie – mémé

Petites échelle et propagation des ondes en sismologie

Les hétérogénéités plus petites que la longueur d'onde sont un problème important pour la propagation des ondes et les techniques d'imageries sismiques. Ce problème n'a jamais été résolu auparavant, principalement du au manque de solution théorique. Une solution a été développé au cours d'une ANR précédente (ANR MUSE)

Un outil 3D de mise à l'échelle des modèles élastiques.

L'objectif principal de ce projet est de résoudre le problème des petites hétérogénéités dans le cadre de la propagation des ondes sismiques à 3D et de l'appliquer aux effets de sites, aux corrections de sources. à la propagation des ondes 3D en milieux complexes avec les éléments spectraux ainsi qu'aux effets des structures fines près de la surface libre pour l'exploration sismique.

Les développements proposés sont basés sur le méthode d'homogénéisation non périodique. Cette méthode permet de prendre en compte les hétérogénéité de petites tailles en 3 dimensions quelque soit la valeur du contraste. La partie propagation des ondes est basées sur la méthode des éléments spectraux.

Le résultat principal attendu est un outil d'homogénéisation 3D disponible pour la communauté scientifique.

La prochaine étape est l'inversion pour une application à l'imagerie sismique,

pas prévu

Depuis l'échelle de l'exploration pétrolière à celle de la terre globale, les ondes sismiques sont la bases des principaux outils utilisés pour étudier le sous sol et les sources sismiques. Grâce à l'apparition récente de méthodes numériques performantes pour résoudre l'équation des ondes comme les éléments spectraux (SEM) ainsi que la croissance de la puissance des ordinateurs, les recherches vers l'inversion de la forme d'onde sismique, aussi bien dans l'industrie que dans le monde académique sont très actives. Dans ce contexte, les hétérogénéités de petites échelles par rapport aux longueurs d'ondes utilisées constituent un défi. En effet, pour des méthodes comme SEM, le maillage hexaédrique des structures géologiques sur lequel elle repose est souvent impossible à construire ou alors il conduit à un coût de calcul prohibitif. Ce problème de maillage est actuellement un des défis important en sismologie. Pour le problème inverse, les structures de petites échelles induisent des effets locaux près des sources, des récepteurs et de la surface libre qui sont difficiles à intégrer de façon bien posée. Enfin, pour ce qui est de l'interprétation des résultats d'inversions, les petites échelles, en induisant des effets d'anisotropie apparente ou de lissage d'interfaces, constituent un problème sérieux. La problématique des petites échelles a constitué un axe de recherche depuis les années soixante. Les premiers résultats ont été obtenus pour les milieux stratifiés en sismologie et les recherches en mécanique des solides ont conduit à l'homogénéisation à deux échelles. Néanmoins, aucune solution générale applicable aux milieux non périodiques n'existait jusqu'aux résultats récents obtenus par l'équipe coordinatrice du présent projet durant l'ANR blanche MUSE (2006-2009) en étendant l'homogénéisation classique du cas périodique au cas non périodique. Les tests à 2D des cette méthode ont donné d'excellents résultats. Un brevet sur cette méthode a été déposé par le CNRS.
Le premier objectif de ce projet ANR est de développer une solution complète et le programme correspondant capable d'homogénéiser n'importe quel modèle géologique 3D complexe, d'adapter notre programme SEM aux résultats de l'homogénéisation et de fournir ces programmes à la communauté scientifique.
Le deuxième objectif est d'appliquer ces outils à trois problèmes géophysiques intéressants:
1) Interaction source/structure. Un des intérêts majeurs de cette méthode est qu'elle ne donne pas seulement un milieu effectif, elle donne aussi les correcteurs tenant compte des structures locales près de la source et des récepteurs. Nous prévoyons d'utiliser cette capacité à la surveillance des explosions nucléaires .
2) Effet des structures fines peu profondes sur les ondes de surface. Ce sujet intéresse principalement l'exploration sismique. En fournissant une vision macroscopique de ces structures fines, l'homogénéisation permet de résoudre efficacement le problème direct mais aussi le problème inverse associé à ce problème en fournissant une paramétrisation bien posée.
3) Application à l'étude de l'interaction de l'anisotropie intrinsèque avec celle induite par les structures fines.
Les 3 applications seront financées par les partenaires et par le projet européen QUEST.
Ce projet implique 4 partenaires complémentaires : l'IPGP qui est à l'origine de l'homogénéisation non périodique, l'école polytechnique qui est spécialiste de l'homogénéisation et les couches limites, Schlumberger amènera sa perspective des problèmes industriels et des modèles de validations 3D et le CEA sa connaissance des sources explosives et des données associées.

Coordination du projet

Yann CAPDEVILLE (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - Délégation Bretagne - Pays de la Loire) – yanncapdeville@gmail.com

L'auteur de ce résumé est le coordinateur du projet, qui est responsable du contenu de ce résumé. L'ANR décline par conséquent toute responsabilité quant à son contenu.

Partenaire

CEA/DIF/DASE/SLDG COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES - Direction des Applications Militaires
LPGN CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - Délégation Bretagne - Pays de la Loire
IPGP INSTITUT DE PHYSIQUE DU GLOBE DE PARIS (IPGP)

Aide de l'ANR 390 000 euros
Début et durée du projet scientifique : - 48 Mois

Liens utiles

Explorez notre base de projets financés

 

 

L’ANR met à disposition ses jeux de données sur les projets, cliquez ici pour en savoir plus.

Inscrivez-vous à notre newsletter
pour recevoir nos actualités
S'inscrire à notre newsletter