Une perspective évolutive de l'architecture et de la fonction du kinétochore méiotique dans l'ovocyte – EvoMeioForce
Evolutionary perspective on meiotic kinetochore architecture and function in oocytes
The overarching goals of our project are to determine how kinetochores, the attachment sites for microtubules on chromosomes, are assembled, attached, correctly oriented and put under tension in oocyte meiosis. Using two distantly related organisms, namely C. elegans and mouse, we aim to determine how characteristics of the meiotic kinetochore bring about the specific segregation patterns in meiosis.
Gaining insights into chromosome segregation in meiosis to understand how errors can occur.
1) How are kinetochores assembled, attached and put under tension in oocyte meiosis I and II?<br />Although kinetochores are essential for accurate chromosome segregation during meiosis of all species, how kinetochores are assembled and attached to spindle microtubules in meiosis of multicellular organisms is unclear. In particular, it is unknown where and how forces are applied by spindle microtubules on mono- and bi-oriented kinetochores in meiosis. These issues are addressed by comparing C. elegans and mouse oocyte kinetochore assembly and structure latest state-of-the art imaging techniques. Microtubule attachment sites will be defined and the forces applied will be studied with FRET-based tension sensors.<br />2) Kinetochore orientation and fusion in meiosis I<br />In budding yeast, a protein complex fuses sister kinetochores together in meiosis I, so that they behave as a single unit. In fission yeast and mammals, meiotic cohesion in the centromere region where the kinetochore is formed promotes sister chromatid mono-orientation. In all species, recombination and the formation of chiasmata on each chromosome are supposed to support mono-orientation in meiosis I by facilitating chromosome orientation on the bipolar spindle. We test if mono- orientation depends on similar factors in two distant multicellular organisms, comparing C. elegans and mouse oocyte meiosis. In particular, the relative contributions of kinetochore fusion will be determined.<br />3) Determinants of the meiotic chromosome segregation pattern<br />After completion of meiosis I, oocytes immediately enter meiosis II, which is characterized by an entirely different segregation pattern with the separation of sister chromatids instead of chromosomes. We could already show that the orientation of paired chromosomes and sister chromatids intrinsic to the chromosome figures, the main question asked.
To answer these questions, we study kinetochore attachments in detail by high and super resolution microscopy techniques, determine the tension applied on mono-or bioriented kinetochores with FRET sensors, and determine the segregation pattern by latest state-of-the-art live imaging, and when kinetochore structure is changed.
Even though two different model systems are used by the two partners, both rely on latest state of the art imaging techniques of both fixed and live samples, single cell analysis and genetics to answer the questions raised such as planned.
The Wassmann team has been able to address the main question, namely whether kinetochore structure determines the segregation pattern of the genetic material in oocyte meiosis. More specifically, the team was able to show that sister kinetochores, which appear fused up to metaphase in meiosis I, individualize into two distinguishable entities in anaphase I, even though they are still mono-oriented. Importantly, they could show that this kinetochore individualization is required in the subsequent second meiotic division, to be able to separate sister chromatids. The kinetochore individualization requires the cleavage activity of the protease Separase. In absence of Separase, as the team could show by using oocytes derived of conditional knock-out mice, kinetochore individualization does not take place in meiosis I, and oocytes are unable to segregate sister chromatids in the following meiosis II.
The Dumont lab is in the process of addressing the main question of this ANR project. We are currently analyzing kinetochore formation in chromosomes from a series of meiosis mutants that display abnormal chromosomal organization. Our results so far suggest that kinetochores are defined “by default” on any exposed chromatin surface in the C. elegans oocyte. In parallel, we are finalizing a manuscript that directly relates to the question of kinetochore assembly and function and thus to the present project, and that aims at defining the precise function of some kinetochore components in the segregation of meiotic chromosomes. More specifically, we dissected a kinetochore pathway that controls kinetochore microtubule dynamics and we show that perturbing this pathway leads to severe meiotic chromosome segregation defects and to oocyte aneuploidy. We anticipate that this manuscript will be submitted for publication within the next few weeks, providing that the country is not confined again and our institute shut down.
The work for up to now shows that the largely accepted model for sister chromatid segregation, namely the need of bipolar tension tearing sister chromatids apart in meiosis II, is wrong. Overall, the team has already answered the main question the coordinator was asking in the proposal, namely whether the pattern of chromosome segregation is determined by the cell cycle stage, or the chromosome itself. Sister kinetochore fusion or individualization is the crucial element that determines the segregation pattern, hence the information is intrinsic to the chromosome itself.For the remaining time of the project the Wassmann team will progress as planned by determining kinetochore attachment and tension applied by microtubules, using FRET sensors that are currently being established, and super resolution microscopy. Currently, the team is establishing a protocol for imaging mouse oocytes with expansion microscopy. Acquisitions will be done with the newly acquired super resolution microscope at the IBPS. Their work opens up new scientific questions, such as to identify the Separase substrate that has to be cleaved in meiosis I, for sister chromatids to segregate in meiosis II. The Dumont team will hopefully progress as planned and finalize a second story that aims at defining the precise function of each kinetochore sub-complex in the C. elegans oocyte using high-resolution microscopy.
Two manuscripts have been published by the Wassmann team (one in the Embo Journal), and two more manuscripts are in preparation. The Dumont team is currently writing up a manuscript for publication, and expecting to submit another publication later this year.
La division cellulaire est essentielle pour le développent et la reproduction des organismes ainsi que pour l’homéostasie des tissus. La plupart des cellules somatiques sont diploïdes et prolifèrent par mitoses successives. La reproduction sexuée fait, quant à elle, intervenir la méiose qui permet la formation des gamètes haploïdes. Cette réduction de ploïdie implique une unique phase de réplication de l’ADN précédant deux étapes successives de ségrégation des chromosomes. Des erreurs au cours de la ségrégation des chromosomes en méiose conduisent à la formation de gamètes contenant un nombre aberrant de chromosomes et donc à des embryons aneuploïdes qui ne sont généralement pas viables. Des divisions méiotiques incorrectes représentent donc un obstacle majeur à la reproduction. Si les principes clefs gouvernant ces divisions sont bien connus, les mécanismes moléculaires sous-jacents restent peu compris. La grande diversité des scénarios adoptés au cours de l’évolution afin d’accomplir la méiose (et en particulier la méiose femelle) représente en effet un véritable défi pour la biologie de la reproduction.
Une spécificité de la gamétogenèse est l’étape réductionnelle de méiose I durant laquelle les chromosomes (et non les chromatides sœurs) sont ségrégés. Cette étape requiert le couplage préalable des kinétochores frères, les structures macromoléculaires qui relient les chromosomes aux microtubules du fuseau de division. Les mécanismes permettant ce couplage, essentiel au succès de la gamétogenèse et donc à la reproduction, restent particulièrement mal caractérisés. Afin de disséquer les composants essentiels au succès des divisions méiotiques de l’ovocyte, nous développerons une approche multidisciplinaire combinant le nématode Caenorhabditis elegans et la souris, avec l’utilisation de méthodes modernes de microscopie optique à haute résolution sur ovocytes vivants, et de microscopie électronique en 3 dimensions. C. elegans et la souris présentent des architectures chromosomiques drastiquement différentes. Ce projet commun devrait donc également fournir une perspective évolutive sur les mécanismes des divisions méiotiques de l’ovocyte. Nous proposons de:
(AIM 1) analyser l’assemblage et la composition des kinétochores méiotiques par immunomarquages observés en microscopie à super-résolution. Le site d’attachement des microtubules du fuseau de division sur les kinétochores sera déterminé par microscopie électronique en tomographie. La localisation et l’amplitude des forces générées par les microtubules seront étudiées par l’utilisation de senseurs de tension basés sur une approche de FRET.
(AIM 2) nous déterminerons par l’utilisation de la méthode de microscopie électronique en 3 dimensions (SBF-SEM, Serial Block Face-Scanning Electron Microscopy) si une structure permettant la fusion des kinétochores frères peut-être détectée en méiose I. Nous analyserons ensuite le rôle de la cohésion centromérique, des chiasmas et d’une protéine potentiellement impliquée dans la fusion des kinétochores frères dans la co-orientation des chromatides sœurs en méiose I.
(AIM 3) finalement nous déterminerons si le mode de ségrégation chromosomique est déterminé par les chromosomes de façon intrinsèque et/ou par le cycle cellulaire.
L’utilisation d’un large éventail d’outils génétiques déjà développés dans les 2 laboratoires partenaires chez C. elegans et la souris permettra l’obtention de données fonctionnelles clefs sur les divisions méiotiques de l’ovocyte. L’expertise combinée des partenaires et la somme des outils à leur disposition permettra le succès de cet ambitieux programme de recherche qui devrait améliorer considérablement notre connaissance des mécanismes permettant l’obtention d’ovocytes fonctionnels essentiels à la reproduction.
Coordination du projet
Katja WASSMANN (Institut Jacques Monod)
L'auteur de ce résumé est le coordinateur du projet, qui est responsable du contenu de ce résumé. L'ANR décline par conséquent toute responsabilité quant à son contenu.
Partenaire
LBD Laboratoire de Biologie du développement
IJM Institut Jacques Monod
IJM Institut Jacques Monod
Aide de l'ANR 591 185 euros
Début et durée du projet scientifique :
septembre 2019
- 48 Mois