Bienvenue au Webinaire du département Biologie-Santé

Pour vous connecter à l’audio, cliquez en bas à gauche sur le téléphone et rejoignez-nous via la connexion audio de votre ordinateur ou par téléphone (cliquez sur appel internationaux pour avoir le numéro français).

Utilisez le formulaire Q&R pour vos questions sur l’AAPG
1ère partie:

Résultats 2019 et 2020
Présentation générale du plan d’action 2021 et de l’AAPG 2021
Priorité Nationales
PRCI
AAP spécifiques
Recommandations pour les choix de comité

2ème partie:

Présentation des 14 axes concernés par BS

Réponses a vos questions
<table>
<thead>
<tr>
<th>CE</th>
<th>Nbre de projets</th>
<th>Budget M€</th>
<th>Taux d’aide Financière 2019 %</th>
<th>Nombre de projets financés</th>
<th>Taux de succès 2019 %</th>
<th>Taux de succès 2018 %</th>
<th>Priorités de l’Etat</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE11</td>
<td>178</td>
<td>11,6</td>
<td>14,9</td>
<td>26</td>
<td>14,6</td>
<td>13,4</td>
<td>ATBR</td>
</tr>
<tr>
<td>CE12</td>
<td>210</td>
<td>13,3</td>
<td>14,3</td>
<td>30</td>
<td>14,3</td>
<td>13,1</td>
<td>ATBR</td>
</tr>
<tr>
<td>CE13</td>
<td>220</td>
<td>15,1</td>
<td>14,5</td>
<td>32</td>
<td>14,5</td>
<td>13,0</td>
<td>ATBR</td>
</tr>
<tr>
<td>CE14</td>
<td>313</td>
<td>20,6</td>
<td>14,7</td>
<td>45</td>
<td>14,4</td>
<td>12,8</td>
<td>AUT</td>
</tr>
<tr>
<td>CE15</td>
<td>204</td>
<td>12,8</td>
<td>13,9</td>
<td>30</td>
<td>14,7</td>
<td>12,7</td>
<td></td>
</tr>
<tr>
<td>CE16</td>
<td>169</td>
<td>10,9</td>
<td>13,0</td>
<td>27</td>
<td>16,0</td>
<td>13,1</td>
<td>AUT</td>
</tr>
<tr>
<td>CE17</td>
<td>205</td>
<td>15,3</td>
<td>15,6</td>
<td>32</td>
<td>15,6</td>
<td>13,0</td>
<td>RTMR</td>
</tr>
<tr>
<td>CE18</td>
<td>227</td>
<td>15,5</td>
<td>14,8</td>
<td>34</td>
<td>15,0</td>
<td>12,1</td>
<td>ATBR</td>
</tr>
<tr>
<td>CE19</td>
<td>191</td>
<td>13,2</td>
<td>14,9</td>
<td>28</td>
<td>14,7</td>
<td>15,1</td>
<td>T</td>
</tr>
<tr>
<td>CE35</td>
<td>102</td>
<td>7,1</td>
<td>15,9</td>
<td>15</td>
<td>14,7</td>
<td>12,9</td>
<td>T</td>
</tr>
<tr>
<td>CE36</td>
<td>68</td>
<td>3,6</td>
<td>14,2</td>
<td>9</td>
<td>13,2</td>
<td>13,9</td>
<td>T</td>
</tr>
<tr>
<td>CE37</td>
<td>172</td>
<td>10,3</td>
<td>14,1</td>
<td>25</td>
<td>14,5</td>
<td>12,9</td>
<td></td>
</tr>
<tr>
<td>CE44</td>
<td>134</td>
<td>9,0</td>
<td>15,3</td>
<td>19</td>
<td>14,2</td>
<td>15,5</td>
<td>ATBR</td>
</tr>
<tr>
<td>CE45</td>
<td>125</td>
<td>7,8</td>
<td>15,8</td>
<td>20</td>
<td>16,0</td>
<td>16,5</td>
<td>T + IA</td>
</tr>
</tbody>
</table>
## RESULTATS provisoires AAPG 2020

20/10/20

<table>
<thead>
<tr>
<th>CE</th>
<th>Nbre de projets</th>
<th>Budget dépôts</th>
<th>Budget M€</th>
<th>Taux d’aide Financière 2020 %</th>
<th>Nombre de projets financés</th>
<th>Taux de succès 2020 %</th>
<th>Priorités de l’État</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE11</td>
<td>162</td>
<td>71,06</td>
<td>10,75</td>
<td>15,1</td>
<td>25</td>
<td>15,4</td>
<td>ATBR +1</td>
</tr>
<tr>
<td>CE12</td>
<td>183</td>
<td>81,81</td>
<td>12,62</td>
<td>15,4</td>
<td>27</td>
<td>14,7</td>
<td>ATBR</td>
</tr>
<tr>
<td>CE13</td>
<td>210</td>
<td>96,88</td>
<td>13,98</td>
<td>14,4</td>
<td>31</td>
<td>14,8</td>
<td>+1</td>
</tr>
<tr>
<td>CE14</td>
<td>340</td>
<td>155,88</td>
<td>21,87</td>
<td>14,0</td>
<td>49</td>
<td>14,4</td>
<td>AUT</td>
</tr>
<tr>
<td>CE15</td>
<td>224</td>
<td>102,19</td>
<td>14,42</td>
<td>14,1</td>
<td>29</td>
<td>12,9</td>
<td></td>
</tr>
<tr>
<td>CE16</td>
<td>177</td>
<td>87,53</td>
<td>12,36</td>
<td>14,1</td>
<td>26</td>
<td>14,7</td>
<td>AUT</td>
</tr>
<tr>
<td>CE17</td>
<td>243</td>
<td>112,13</td>
<td>15,32</td>
<td>13,7</td>
<td>34</td>
<td>14</td>
<td>RTMR +4</td>
</tr>
<tr>
<td>CE18</td>
<td>254</td>
<td>114,4</td>
<td>16,31</td>
<td>14,2</td>
<td>36</td>
<td>14,2</td>
<td>ATBR +1</td>
</tr>
<tr>
<td>CE19</td>
<td>233</td>
<td>112,84</td>
<td>14,29</td>
<td>12,7</td>
<td>30</td>
<td>12,9</td>
<td>T +1</td>
</tr>
<tr>
<td>CE35</td>
<td>95</td>
<td>41,31</td>
<td>6,18</td>
<td>14,9</td>
<td>14</td>
<td>14,7</td>
<td>T +2</td>
</tr>
<tr>
<td>CE36</td>
<td>75</td>
<td>26,56</td>
<td>4,16</td>
<td>15,7</td>
<td>11</td>
<td>14,7</td>
<td>T</td>
</tr>
<tr>
<td>CE37</td>
<td>152</td>
<td>69,47</td>
<td>9,83</td>
<td>14,1</td>
<td>23</td>
<td>15,1</td>
<td></td>
</tr>
<tr>
<td>CE44</td>
<td>129</td>
<td>55,93</td>
<td>7,93</td>
<td>14,2</td>
<td>19</td>
<td>14,7</td>
<td>ATBR +2</td>
</tr>
<tr>
<td>CE45</td>
<td>147</td>
<td>56,93</td>
<td>8,5</td>
<td>14,9</td>
<td>21</td>
<td>14,3</td>
<td>T + IA +1</td>
</tr>
</tbody>
</table>
Biologie - Santé

Nombre de projets déposés

- 2015: 2346
- 2016: 2334
- 2017: 2623
- 2018: 2530
- 2019: 2518

Demandes d'aides projets déposés

- 2015: 1041245
- 2016: 1030156
- 2017: 1129570
- 2018: 1121166
- 2019: 1133515

Nombre de projets sélectionnés

- 2015: 227
- 2016: 284
- 2017: 333
- 2018: 340
- 2019: 372

Demandes d'aides projets sélectionnés en fin d'exercice

- 2015: 102384
- 2016: 129411
- 2017: 143636
- 2018: 151533
- 2019: 168353

Taux de succès (Nb projets)

- 2015: 9,7%
- 2016: 12,2%
- 2017: 12,7%
- 2018: 13,4%
- 2019: 14,8%

Taux d'aide allouée

- 2015: 9,8%
- 2016: 12,6%
- 2017: 12,7%
- 2018: 13,5%
- 2019: 14,9%
Les appels du plan d’action 2021

- **L’appel à projets générique**
  - Instruments de financement : PRC, PRCE, PRCI, JCJC
  - 50 comités d’évaluation scientifique
  - Sélection en 2 temps (excepté les PRCI)

- **Des appels spécifiques**
  - Tournés vers l’Europe et l’international : bilatéraux, JPI, ERA-NET, MRSEI, T-ERC, Belmont Forum…
  - Centrés sur le partenariat public/privé : Labcom, Chaires industrielles, Instituts Carnot, Astrid, Astrid Maturation
  - Challenges ou Flashs
## AAPG 2021 : Grande stabilité par rapport à 2020

<table>
<thead>
<tr>
<th>Axe PA 2019</th>
<th>CES</th>
<th>CES 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>CES44</td>
<td>Biochimie du vivant</td>
</tr>
<tr>
<td>3.2</td>
<td>CES11</td>
<td>Caractérisation des structures et relation-structure fonction des macromolécules biologiques</td>
</tr>
<tr>
<td>3.3</td>
<td>CES12</td>
<td>Génétique, génomique et ARN</td>
</tr>
<tr>
<td>3.4</td>
<td>CES13</td>
<td>Biologie cellulaire, biologie du développement et évolution</td>
</tr>
<tr>
<td>3.5</td>
<td>CES14</td>
<td>Physiologie et physiopathologie</td>
</tr>
<tr>
<td>3.6</td>
<td>CES15</td>
<td>Immunologie, infectiologie et inflammation</td>
</tr>
<tr>
<td>3.7</td>
<td>CES16</td>
<td>Neurosciences moléculaires et cellulaires, Neurobiologie du développement</td>
</tr>
<tr>
<td>3.8</td>
<td>CES37</td>
<td>Neurosciences intégratives</td>
</tr>
<tr>
<td>3.9</td>
<td>CES17</td>
<td>Recherche translationnelle en santé</td>
</tr>
<tr>
<td>3.10</td>
<td>CES18</td>
<td>Innovation biomédicale</td>
</tr>
<tr>
<td>8.3</td>
<td>CES35</td>
<td>Maladies infectieuses et environnement</td>
</tr>
<tr>
<td>8.4</td>
<td>CES36</td>
<td>Santé Publique, santé et sociétés</td>
</tr>
<tr>
<td>8.5</td>
<td>CES45</td>
<td>Mathématiques et sciences du numérique pour la biologie et la santé</td>
</tr>
<tr>
<td>8.7</td>
<td>CES19</td>
<td>Technologies pour la santé</td>
</tr>
</tbody>
</table>
L’ANR n’a pas vocation à soutenir les recherches sur le Cancer, le VIH/Sida et les hépatites virales. Ces thématiques sont prises en charge par l’INCa et l’ANRS.

Néanmoins, les projets dans ces domaines qui comportent un partenariat avec des industriels ou un partenaire international (ou JCJC pour la thématique cancer) pourront être soutenus par l’ANR, ainsi que dans le cadre des appels à projets de type ERA-NET, lorsqu’ils sont ouverts à ces thématiques.

Les projets de recherche clinique seront préférentiellement soumis au Programme Hospitalier de Recherche Clinique (PHRC), et les projets de recherche sur les systèmes de santé et de soins au Programme de Recherche sur la Performance du système des Soins (PREPS) de la Direction générale de l’offre de soins (DGOS).
les priorités de l’Etat 2021

- Générique : Covid-19
- Intelligence artificielle
- Sciences humaines et sociales (Plan SHS)
- Technologies quantiques.
- Autisme au sein des troubles du neurodéveloppement (Plan Autisme)
- Recherche translationnelle sur les maladies rares (Plan national maladies rares)
- Production de Biomédicaments (Grand défi Biotech)
LES PRCI....
## Résultat des projets PRCI 2019 par pays partenaire

<table>
<thead>
<tr>
<th>Pays</th>
<th>Nombre projets déposés</th>
<th>Nombre sélectionnés</th>
<th>taux sélection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allemagne</td>
<td>125</td>
<td>20</td>
<td>16%</td>
</tr>
<tr>
<td>Autriche</td>
<td>23</td>
<td>3</td>
<td>13%</td>
</tr>
<tr>
<td>Suisse</td>
<td>27</td>
<td>3</td>
<td>11%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>2</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>10</td>
<td>1</td>
<td>10%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>4</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

**Budget global 8,37 M€**
L’enregistrement des projets PRCI « Projet de recherche collaborative – international » pour lesquels l'ANR est Lead agency et hors Lead Agency doit nécessairement être effectué en phase 1 de l’AAPG 2021.

Les partenaires étrangers pourraient avoir à fournir certaines informations administratives ou certains documents (copie de la proposition de projet, par exemple) à l’agence étrangère. Il est nécessaire de consulter l’annexe spécifique à l’accord concerné dès que disponible sur la page web dédiée à l’appel à projets générique 2021, et le site internet de l’agence étrangère.
<table>
<thead>
<tr>
<th>Pays</th>
<th>Domaines financés par l'ANR et les institutions nacionales</th>
<th>Domaines non financés by l'ANR et les institutions nacionales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allemagne (DFG)</td>
<td>Tous les champs disciplinaires financés par l'ANR et la DFG, sauf les sciences humaines et sociales***</td>
<td>Tous sauf 4.1 ; 4.2 ; 4.3 ; 4.4 ; 8.4***</td>
</tr>
<tr>
<td>Autriche (FWF)</td>
<td>Tous les champs disciplinaires financés par l'ANR et le FWF</td>
<td></td>
</tr>
<tr>
<td>Luxembourg (FNR)</td>
<td>Tous les champs disciplinaires financés par l'ANR et le FNR</td>
<td></td>
</tr>
<tr>
<td>Suisse (FNS)</td>
<td>Tous les champs disciplinaires financés par l'ANR et le FNS</td>
<td></td>
</tr>
<tr>
<td>Etats Unis (NSF)</td>
<td>Physique du vivant</td>
<td>CE11, CE12, CE13, CE45</td>
</tr>
</tbody>
</table>
Les projets doivent être déposés auprès des deux agences de financement concernées, selon le calendrier et les modalités de dépôt de chacune des agences

<table>
<thead>
<tr>
<th>Pays</th>
<th>Domaines financés</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singapour NRF</td>
<td>Numérique pour la Santé</td>
<td>CE18, CE19, CE45</td>
</tr>
<tr>
<td>Russie RSF</td>
<td>• Physique • Sciences humaines et Humanités – Héritage culturel • Pandémie Covid-19</td>
<td>CE35</td>
</tr>
<tr>
<td>Taïwan MOST</td>
<td>Tous les champs disciplinaires financés par l'ANR et l'agence taïwanaise</td>
<td></td>
</tr>
<tr>
<td>Hong Kong RGC</td>
<td>Tous les champs disciplinaires financés par l'ANR et l'agence hong-kongaise</td>
<td></td>
</tr>
</tbody>
</table>
Les instruments de financement faisant l’objet d’appels à projets spécifiques

- Tournés vers l’Europe et l’international : bilatéraux, JPI, ERA-NET, MRSEI, T-ERC, Belmont Forum…
- Centrés sur le partenariat public/privé : Labcom, Chaires industrielles, Instituts Carnot, Astrid, Astrid Maturation
- Challenges ou Flashs
Europe et international

- **T-ERC (Tremplin ERC)**
  - **Objectif**: Renforcer la participation et augmenter le taux de succès de la France à l’ERC en aidant les candidats d’excellent niveau
  - **Prérequis d’éligibilité**: avoir obtenu la note A à l’issue de l’oral de la 2e étape des appels ERC Starting ou ERC Consolidator
  - Pas de nouvelle évaluation des dossiers (pas de comité)
  - 100k€ à 200k€ sur 18 mois maximum
  - Obligation de soumettre une nouvelle candidature ERC

- **MRSEI (Montage de réseaux scientifiques européens et internationaux)**
  - **Objectif**: Facilité l’accès aux financements européens, H2020...
  - **Prérequis d’éligibilité**: Avoir identifié un appel H2020
  - **Dossier de soumission simplifié**
  - 30k€ par projet
Infectious diseases and Antimicrobial resistance

Nutrition

Neurosciences

Rare diseases
Cardiovascular diseases

Personalised Medicine

NanoMedicine

Initiatives Multilatérales (hors AAPG)
Un webinar spécifique sera organisé en novembre 2020 sur ces appels multilatéraux européens

JPI Anti-Microbial Resistance
ERA-NET of JPI AMR
ERA-NET coll Europe Asia
ERA-NET on infectious animal diseases
JPI HealthyDietHealthyLife
ERA-NET of JPI-HDHL on biomarkers
ERA-NET of JPI-HDHL on Intestinal microbiomics
Joint Programming Neurodegenerative Diseases
ERA-NET of JPND
Network of Centers of Excellence in Neurosciences
ERA-NET cofund NEURON on Diseases related to Neurosciences
The Flagship ERA-NET
Computational Neurosciences
ERA-NET cofund on Rare Diseases
ERA-NET cofund on Cardiovascular Diseases
ERA-NET cofund on System Medicine
ERA-Net Cofund in Personalised Medicine (201-)
CSA in Personalised Medicine
Consortia in Personalised Medicine
ERA-NET on NanoMedicine

JPI AMR
JPI-EC-AMR
SEA-EU-NET
ICRAD
JPI HDHL
ERA-HDHL
HDHL INTIMIC
JPI-JPND
JPI-JPcofuND
IC CoEN
ERANET Neuron
ERANET Flag-ERA
IC CRCNS
E-Rare
ERA-CVD
ERACoSysMed
ERA Per Med
IC PerMed
IC PerMed Consortia
EuroNanoMedIII

JPI: Joint programming Action; ERA: ERANET; IC: International Consortium
Partenariats public-privé

- **Labcom**
  - **Objectif**: Soutien à la création de laboratoires communs, Développer le potentiel de partenariat industriel et de transfert existant chez les acteurs de la recherche académique vers les PME, TPE et ETI
  - **Attendus**: Gouvernance commune, pérennité du modèle économique, stratégie de transfert et de valorisation
  - 300k€ au partenaire académique

- **Chaires industrielles**
  - **Objectif**: ouverture d’un chaire dans un laboratoire public en co-construction avec une entreprise française dans un domaine stratégique
  - **Candidatures présentées par l’établissement d’accueil avec CV du candidat**
  - Aide ANR à concurrence de celle apportée par l’entreprise et versée à l’établissement d’accueil (600 000€ à 1 200 000€)

- **Astrid**
  - **Objectifs**: Accompagnement des travaux de recherche/innovation en lien avec la défense, Favoriser les ruptures technologiques
  - **Candidatures évaluées par un comité *ad hoc***
  - Financement DGA
A comparer avec les augmentations du budget d’intervention de 2018 à 2020 d’environ 30 M€/an ...
Prend en compte l’augmentation du préciput (cible 40%) qui revient aux institutions de recherche liées aux projets ANR
Proposition de Plan de Relance de l’Économie 03-09-2020

Stratégie de relance de la R&D - ANR

Accélérer la montée en puissance de la recherche compétitive en France via le plan de relance européen, en complétant la trajectoire budgétaire déjà prévue pour l’agence nationale de la recherche (ANR) dans le cadre du projet de loi de programmation de la recherche.

Coût et financement de cette mesure

Près de 400 M€. Financement de l’Union européenne.


**Objectif** : gagner deux ans sur la montée en puissance de la LPPR action ciblée sur l’AAPG
Le principe de réalité...

- Vote de la LPPR au parlement entre le 11 et le 21 septembre 2020 en procédure accélérée
- Vote de la plupart des mesures du plan de relance de l'économie dans les projets de loi de finances 2021 en octobre 2020

1 - Des amendements peuvent modifier le contenu de la loi et du plan. Exemples potentiels pour l’ANR : mesure du plan étalée sur 3 ans au lieu de 2 ans..., diminution des budgets prévus...

2- Dans ces conditions, difficile de prévoir l’augmentation du budget de l’ANR 2021 et sa répartition avant la mi-novembre

3- Cette augmentation aura un impact majeur sur le financement de la recherche via l’AAPG mais difficile d’anticiper précisément les taux de succès de 2021 à 2023
L’AAPG 2021

Le point d’entrée :

les comités/axes scientifiques en Biologie-Santé
Recommandations pour le choix du comité

Chaque axe scientifique défini dans le Plan d’action 2021 et détaillé dans le texte de l’AAPG2021 correspnd à un comité d’évaluation scientifique du même nom. Le périmètre de chacun de ces axes scientifiques, et donc du comité d’évaluation associé, est défini par un ensemble de thématiques, de disciplines, de mots-clés et de codes ERC associés, sur lesquels doivent reposer votre choix.

N°1 => Lire les textes de l’AAPG

La capacité de votre projet à répondre aux enjeux de recherche de l’axe scientifique choisi est un élément d’évaluation de l’étape 1. Le choix de l’axe scientifique dans lequel soumettre votre projet, et par conséquent celui du comité d’évaluation scientifique associé, relève donc de votre entière responsabilité.

L’ANR et ses personnels scientifiques peuvent vous fournir des explications sur les textes publiés dans le cadre de l’AAP2021 mais le choix de l’axe relève de votre responsabilité...
• N°2 : examiner la liste des membres du comité de l’AAPG2020

https://anr.fr/fr/detail/call/appel-a-projets-generique-2020/

• N°3 : lire aussi les titres de projets sélectionnés les années précédentes

Le choix du comité dans lequel le projet sera évalué est réalisé par le coordinateur de projet en étape 1 (lors de la soumission de la pré-proposition pour les instruments PRC, PRCE et JCJC ou lors de l’enregistrement pour l’instrument PRCI) et ne peut être modifié durant l’ensemble du processus.
Présentation des différents axes/comités
Axe 3.1. Biochimie du vivant

Contacts : nadia.senni@agencerecherche.fr ; philippe.bouvet@agencerecherche.fr

Cet axe de recherche vise à caractériser et modéliser les transformations chimiques et biochimiques assurées par la cellule.

Son périmètre, en interface avec la chimie biologique, couvre les thématiques suivantes :

- l’enzymologie, la pharmacologie, la toxicologie,
- les études sur le métabolisme et la bio-énergétique,
- les approches analytiques et «omics», dont les analyses protéomiques, lipidomiques, glycomiques, métabolomiques et multi-omics quantitatives,
- les approches pour agir sur le vivant et leurs applications à l’analyse fine des mécanismes en biologie fonctionnelle et en santé (criblage et ingénierie moléculaire, sondes, inhibiteurs, ligands, molécules à visées diagnostiques ou thérapeutiques),
- la conception de nouveaux systèmes biologiques (biologie de synthèse) et l’altération contrôlée des voies métaboliques, visant à comprendre les mécanismes fondamentaux du vivant ou à développer leurs applications biotechnologiques.

Mots-clés associés : biochimie, enzymologie, pharmacologie, toxicologie, bio-énergétique, protéomique, lipidomique, glycomique, métabolomique, biologie de synthèse, ingénierie moléculaire, criblage, biotechnologies.

Codes ERC associés : majeure LS01, autres LS02, LS04, LS07, LS08, LS09.

ODD associés: 3,9, 14 et 15.
Conseil : lire aussi les titres de projets sélectionnés les années précédentes

<table>
<thead>
<tr>
<th>Projets</th>
<th>Description</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYANO</td>
<td>Conception d'analogues de la pyoverdine par biologie synthétique</td>
<td>Coraline RIGOUIN</td>
</tr>
<tr>
<td>TB-ModuLip</td>
<td>Découverte de nouveaux lipides immunomodulateurs de Mycobacterium tuberculosis</td>
<td>Emilie LAYRE</td>
</tr>
<tr>
<td>BrownSugar</td>
<td>Biosynthèse des polysaccharides de paroi chez les algues brunes : criblage d'activités glycosyl transférases</td>
<td>Cécile HERVÉ</td>
</tr>
<tr>
<td>MolProPIMS</td>
<td>Sondes moléculaires pour l'étude de la biosynthèse des PIMs</td>
<td>Estelle GALLIENNE</td>
</tr>
<tr>
<td>PaluMet</td>
<td>Étude du métabolisme phospholipidique et développement d'inhibiteurs ciblant une enzyme essentielle du parasite du paludisme.</td>
<td>Rachel CERDAN</td>
</tr>
<tr>
<td>PROTEOMICS-IL33</td>
<td>Approches protéomiques et pharmacologiques pour caractériser les mécanismes moléculaires régulant l'expression et la libération de la protéine IL-33 endogène</td>
<td>Corinne CAYROL</td>
</tr>
<tr>
<td>RUMisBAC*</td>
<td>Mode d'action et bio-ingénierie des sactipeptides RumC pour vaincre la résistance aux antibiotiques des bactéries à Gram-positif</td>
<td>Victor DUARTE</td>
</tr>
<tr>
<td>SAM4RiPP</td>
<td>Enzymes à radical SAM pour la biosynthèse de nouveaux RiPPs</td>
<td>Olivier BERTEAU</td>
</tr>
</tbody>
</table>

www.anr.fr
<table>
<thead>
<tr>
<th>Axe 3.1</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>56,6M€</td>
<td>8,95M€*</td>
<td>15,8%</td>
<td>126</td>
<td>21*</td>
<td>16,7%</td>
</tr>
</tbody>
</table>

• Nombre de membres de comités AAPG2020: **17**.  

• Nombre de projets financés: JCJC: **4**; PRC: **17**; PRCE : **0**
• Coût moyen d’un projet : JCJC **272k€** ; PRC : **462k€** ; PRCE **0k€**
• Nombre total de partenaires financés : (4 en JCJC ; **46** en PRC, **0** en PRCE)
• Nombre de partenaires par projet : JCJC : **1** ; PRC : **2,71**
• Aide par partenaire : JCJC **272k€** ; PRC : **171k€** ; PRCE : N/A

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Axe 3.2. Caractérisation des structures et relations structure-fonction des macromolécules biologiques

Contacts : quentin.merel@agencerecherche.fr; philippe.bouvet@agencerecherche.fr

Cet axe de recherche, en interface avec la physico-chimie et la biophysique, couvre les thématiques suivantes :

• la compréhension fine des mécanismes moléculaires gouvernant les grandes fonctions du vivant,
• la prédiction et la résolution des structures des macromolécules biologiques et de leurs complexes et le décryptage de leurs relations structure-fonction,
• les approches permettant d’étudier ces structures et leur dynamique dans des contextes de complexité croissante (architectures multimoléculaires isolées ou reconstituées in vitro, phases complexes, cellule),
• les développements technologiques ou méthodologiques en biologie structurale (RMN, cristallographie, cryo-microscopie électronique ...),
• les développements technologiques ou méthodologiques en imagerie (microscopie à super-résolution, microscopie corrélatives, ...),
• les développements technologiques ou méthodologiques en dynamique moléculaire,
• les approches en spectroscopie structurale et sur molécules uniques.

Mots-clés associés : biologie structurale, relations structure-fonction des macromolécules biologiques et de leurs complexes, relations structure-fonction des membranes, biophysique, développements méthodologiques, biologie des systèmes, modélisation.

Codes ERC associés : majeure LS01, autres LS02, LS09.

ODD associés : 3, 9, 14 et 15.
**Projets sélectionnés AAPG 2020**

Conseil : lire aussi les titres de projets sélectionnés les années précédentes

---

**JC –TbbRNA** Études structurale et fonctionnelle des voies uniques de modification de l’ARN chez le parasite pathogène pour l’homme
*Trypanosoma brucei*
Eva KOWALINSKI

**JC –virofluidics** Développement d'une nouvelle technologie: la viro-fluidique pour étudier en temps réel la production virale à l'échelle de la cellule infectée et de la particule virale uniques.
Marius SOCOL

**BreakDance** Caractérisation de la chorégraphie orchestrée par l'hétérodimère Ku sur les cassures double-brin de l'ADN
Jean-Baptiste CHARBONNIER

**CRYOCHROM** Organisation structurale et fonctionnelle de la chromatine à l'échelle du nucléosome. Analyse par cryo tomographie électronique de sections vitreuses et modélisation in silico
Amélie LEFORESTIER

**FullContact** Une approche multidisciplinaire pour comprendre la structure et la dynamique du système de sécrétion de type VI
Eric CASCALES

**HOMEOWALL** L'homeostasie rheologique de la paroi cellulaire végétale au cours de la croissance
Herman HÖFTE

**NANO-SYNATLAS** Un atlas de la morphologie et de l’organisation nanométrique des synapses par microscopie de super-résolution computationnelle
Florian LEVET

**VIRAGE** Bases structurales et fonctionnelles de la methylation epitranscriptomique de genomes de virus à (+)ARN
Bruno CANARD
<table>
<thead>
<tr>
<th>Axe 3.2</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td>71,1M€</td>
<td>11,3 M€ *</td>
<td>15,8%</td>
<td>159</td>
<td>26*</td>
<td>16,4%</td>
<td></td>
</tr>
</tbody>
</table>

• Nombre de membres de comités AAPG2019: **20**.
• Nombre de projets financés: JCJC: 6; PRC: 20; PRCE: 0
• Coût moyen d’un projet : JCJC **243k€** ; PRC : **489k€** ; PRCE : **N/A**
• Nombre total de partenaires financés : (6 en JCJC ; **59** en PRC ; 0 en PRCE)
• Nombre de partenaires par projet : JCJC : 1 ; PRC : 3 ; PRCE : N/A
• Aide par partenaire : JCJC **243k€** ; PRC : **195k€** ; PRCE : **N/A**

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Vos questions sur les axes :

Axe 3.1. Biochimie du vivant

Axe 3.2. Caractérisation des structures et relations structure-fonction des macromolécules biologiques
Cet axe de recherche couvre les thématiques suivantes :

- le décryptage des mécanismes généraux et régulations responsables de l’organisation 3D des génomes, de la chromatine et de ses modifications épigénétiques (rôle des entités génétiques géniques, de l’ADN non-codant, des éléments transposables, des ARN non-codants et des interactions ARN-protéines, ...), - y compris en lien avec les conditions environnementales (exposome),
- les études fines des processus de réplication, réparation, recombinaison, transcription, maturation, traduction et transport des ARN, ainsi que des régulations/dérégulations transcriptionnelles, post-transcriptionnelles et traductionnelles, y compris par les ARN non-codants,
- l’analyse des mécanismes requis pour le maintien de l’intégrité des génomes et la transmission fidèle de l’information génétique, ainsi que des mécanismes et grands principes de base d’organisation, de variabilité et d’évolution des génomes,
- l’hérédité transgénérationnelle des modifications épigénétiques,
- la caractérisation de la relation génotype-phénotype, incluant l’étude des maladies génétiques - y compris complexes - et le rôle de l’exposome sur cette relation.
Les recherches seront réalisées à l’échelle moléculaire, cellulaire, sur des modèles bactériens, archées, eucaryotes unicellulaires et multicellulaires animaux ou végétaux, ou sur des cohortes de patients et des populations contrôles, ceci par des approches moléculaires, cellulaires, génétiques, de transcriptomique, de protéomique, ainsi que des approches multidisciplinaires incluant la biologie structurale, la biophysique, l’informatique et/ou les mathématiques. Mais le projet ne doit pas se limiter au développement d’une de ces 4 dernières approches.

**Mots-clés associés** : réplication, réparation, recombinaison, structure et dynamique de la chromatine et du nucléoïde bactérien, épigénétique, expression des gènes, transcriptomique, ARN non-codants, maturation des ARN, ribosomes, traduction-évolution des génomes, diversité génétique, maladies génétiques, relations génotype-phénotype, exposome, développements d’outils génétique.

**Codes ERC associés** : majeure LS02, autres LS01, LS08, LS09.

**ODD associés** : 3, 9, 14 et 15.
### Conseil : lire aussi les titres de projets sélectionnés les années précédentes

<table>
<thead>
<tr>
<th>Acronyme et titre du projet</th>
<th>Coordinateur/Coordinatrice</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BuddY</strong></td>
<td><strong>Gilles FISCHER</strong></td>
</tr>
<tr>
<td><strong>NeoDNAcontrol</strong></td>
<td><strong>Hervé VAUCHERET</strong></td>
</tr>
<tr>
<td><strong>MetalAureus</strong></td>
<td><strong>David LALAOUNA</strong></td>
</tr>
<tr>
<td><strong>ChroDynE</strong></td>
<td><strong>Thomas GREGOR</strong></td>
</tr>
<tr>
<td><strong>CARE-ME</strong></td>
<td><strong>Olivier GAVET</strong></td>
</tr>
<tr>
<td><strong>CONDENSin3R</strong></td>
<td><strong>Armelle LENGRONNE</strong></td>
</tr>
<tr>
<td><strong>MARMER</strong></td>
<td><strong>Deborah BOURC'HIS</strong></td>
</tr>
<tr>
<td><strong>GenoMorph</strong></td>
<td><strong>Clément ZANOLLi</strong></td>
</tr>
<tr>
<td><strong>PapuaEvol</strong></td>
<td><strong>Francois-Xavier RICAUT</strong></td>
</tr>
<tr>
<td><strong>Motor-DM</strong></td>
<td><strong>Frederique RAU</strong></td>
</tr>
<tr>
<td><strong>MCORGLAUC</strong></td>
<td><strong>Jean-Michel ROZET</strong></td>
</tr>
</tbody>
</table>
### Chiffres-clés AAPG2020 CE12

<table>
<thead>
<tr>
<th>Axe 3.3</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81,8M€</td>
<td>12,5M€</td>
<td>15,3%</td>
<td>177</td>
<td>27</td>
<td>15,3%</td>
</tr>
</tbody>
</table>

- Nombre de membres dans le comité CE12-AAPG2020: **26**  

- Nombre de projets financés: JCJC : 6; PRC : 21  
- Coût moyen d’un projet : JCJC : **294k€** ; PRC : **512k€**  
- Nombre total de partenaires financés : JCJC : 6 ; PRC : **52**  
- Nombre moyen de partenaires financés par projet : JCJC : 1 ; PRC : 2,5  
- Aide moyenne par partenaire : JCJC : **294k€** ; PRC : **207k€**

*Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020*
Axe 3.4. Biologie Cellulaire, biologie du développement et de l’évolution

Contacts : delphine.ganne@agencerecherche.fr ; dominique.dunon-bluteau@agencerecherche.fr

Cet axe de recherche couvre les thématiques suivantes :

• la compréhension des mécanismes biochimiques et biophysiques élémentaires à l’échelle des cellules rencontrées dans le monde vivant : cycle cellulaire, biogenèse et dynamique des organites intracellulaires et de la membrane plasmique, mécanismes moléculaires de la sénescence, du vieillissement et de la mort cellulaire, signalisation de la réception du signal à sa transduction, homéostasie et différenciation des différents types cellulaires, maintien et différenciation des cellules souches, l’adhérence cellulaire, le mouvement et la migration cellulaire,

• la compréhension de ces mécanismes à l’échelle des tissus dans l’organisme ou dans des systèmes multicellulaires reconstitués in vitro (organoïdes, génie tissulaire) pour déchiffrer les principes de base de l’homéostasie cellulaire, de la morphogénèse, du développement embryonnaire et post-embryonnaire des tissus animaux et végétaux, du vieillissement des tissus et des organismes eucaryotes multicellulaires, ainsi que l’organisation des colonies cellulaires procaryotes,
Cet axe de recherche couvre également :

- la compréhension de ces mécanismes dans le cadre de l’évolution des espèces, et de l’adaptation aux conditions de l’environnement.

Il est à noter que ces mécanismes peuvent être étudiés dans les bactéries, les archées, les champignons, les végétaux et les animaux.

**Mots-clés associés** : trafic intracellulaire, cycle cellulaire, sénescence, apoptose, homéostasie cellulaire, différenciation et fonctions cellulaires, adhérence- mouvement et migration cellulaire, homéostasie tissulaire, morphogénèse, cellules souches, biologie du développement, signalisation, biologie de l'évolution, physique de la cellule.

**Codes ERC associés** : majeure LS03, autre LS08.

**ODD associés** : 3, 9, 14 et 15.

Contacts : delphine.ganne@agencerecherche.fr ; dominique.dunon-bluteau@agencerecherche.fr
Conseil : lire aussi les titres de projets sélectionnés les années précédentes

<table>
<thead>
<tr>
<th>Projet</th>
<th>Description</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacPro</td>
<td>Robustesse de la prolifération bactérienne</td>
<td>Manuel CAMPOS</td>
</tr>
<tr>
<td>GolgiPS</td>
<td>Adaptabilité des voies de sécrétion dépendantes de l'appareil de Golgi</td>
<td>Gaelle BONCOMPAIN</td>
</tr>
<tr>
<td>MTDiSco</td>
<td>Adaptation Dimensionnelle et Temporelle de l'Assemblage du Fuseau Mitotique : Mécanismes Conservés et Adaptatifs</td>
<td>Benjamin LACROIX</td>
</tr>
<tr>
<td>NovelAsym</td>
<td>Evolution d'une nouvelle asymétrie gauche-droite chez Drosophila pachea</td>
<td>Michael LANG</td>
</tr>
<tr>
<td>EndoMitR</td>
<td>Contrôle de la fonction mitochondriale par un mécanisme d'endocytose Rab4b-dependant</td>
<td>Mireille CORMONT</td>
</tr>
<tr>
<td>EVOLREC</td>
<td>Elucider les causes et conséquences évolutives de la variation quantitative de la recombinaison méiotique</td>
<td>Matthieu FALQUE</td>
</tr>
<tr>
<td>HydroField</td>
<td>Contribution des flux d'eau au développement du mérisme apical caulinaire</td>
<td>Christophe GODIN</td>
</tr>
<tr>
<td>LimbCT</td>
<td>Mécanismes moléculaires et cellulaires regulant la diversité des tissus conjonctifs</td>
<td>Delphine DUPREZ</td>
</tr>
<tr>
<td>PlantScape</td>
<td>Paysage sub-cellulaire des cellules de plante au cours du cycle cellulaire</td>
<td>David BOUCHEZ</td>
</tr>
<tr>
<td>Pp-HEART</td>
<td>Rôle du senseur lipidique PPARg dans le déploiement des cellules progénitrices cardiaques: première implication du métabolisme énergétique et de l'environnement dans la morphogenèse précoce du tube cardiaque.</td>
<td>Magali THEVENIAU-RUISSY</td>
</tr>
<tr>
<td>Axe</td>
<td>Aides demandées en étape I (pré-propositions éligibles)</td>
<td>Somme des aides allouées pour les propositions retenues</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>3.4</td>
<td>96,88M€</td>
<td>14,35M€</td>
</tr>
</tbody>
</table>

- Nombre de membres dans le comité CE13-AAPG2020: **28**
  

- Nombre de projets financés : JCJC : 7 ; PRC : 24
- Coût moyen d’un projet : JCJC : **281k€** ; PRC : **516k€**
- Nombre total de partenaires financés : JCJC : 7 ; PRC : **75**
- Nombre moyen de partenaires financés par projet : JCJC : 1 ; PRC : 3,1
- Aide moyenne par partenaire : JCJC : **281k€** ; PRC : **165k€**

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Vos questions sur les axes :

3.3. Génétique, génomique et ARN

3.4. Biologie Cellulaire, biologie du développement et de l’évolution
Axe 3.5. Physiologie et physiopathologie

Contacts : vincent.rouet@agencerecherche.fr; chantal.desdouets@agencerecherche.fr

Les projets pluridisciplinaires abordant l'ensemble des déterminants biologiques, nutritionnels, comportementaux, psychologiques et sociaux, sous-tendant un fonctionnement physiologique et/ou pathologique pourront être évalués dans cet axe.

Cet axe de recherche couvre les thématiques suivantes :

• la compréhension de l’assemblage hiérarchique des composants moléculaires et cellulaires des tissus et des organes, ainsi que des voies de signalisation (y compris métaboliques) sous-jacentes, de leurs interactions et des propriétés physiologiques que ces interactions génèrent,
• la compréhension de ces interactions et propriétés au sein des organismes dans leur entier, y compris le microbiote, et à l’interface de l’environnement,
• la compréhension des mécanismes, de leur altération dans les processus pathologiques y compris en utilisant des organoïdes.

Mots-clés associés : physiologie, physiopathologie, physiologie/pathologie systémique et comparative, maladies chroniques multifactorielles, maladies et vieillissement, métabolisme et nutrition, microbiome, biologie de la reproduction.

Codes ERC associés : majeure LS04, autre LS07.
ODD associés: 3, 9, 14 et 15.
Conseil : lire aussi les titres de projets sélectionnés les années précédentes

**Projets sélectionnés AAPG2020**

**CE 14**

- **AirMN**: Dynamique des autoanticorps anti-PLA2R1 et anti-THSD7A chez les patients atteints de glomerulonéphrite extramembraneuse: des étapes précoces à la maladie active
  
  - Germaine LAMBEAU

- **antIDOte**: Manipuler les metabolites d’IDO dans les MICI
  
  - Harry SOKOL

- **ARDIGERM**: Acide rétinoïque dans la différenciation des cellules germinales et la méiose
  
  - Norbert GHYSELMINCK

- **AstrObesity**: Adaptation et perturbation de la communication astrocyte-neurone dans le développement du syndrome métabolique
  
  - Serge LUQUET

- **HYPOSEN**: Impact cardioïde de la senescence précoce du tissu adipeux induite par l’hypoxie intermittente
  
  - Claire ARNAUD

- **IMAGINE**: Rôle de la monoacylglycerol lipase (MAGL) dans l’évolution de la stéatothépatie non alcoolique (NASH)
  
  - Sophie LóTERSZTAJN

- **INFLUENZAGING**: La sénescence cellulaire pulmonaire induite par le virus influenza: déterminant de la sévérité de l’atteinte respiratoire et de l’induction des maladies pulmonaires chroniques
  
  - Serge ADNOT

- **LSD1GR**: Caractérisation de la fonction de Lsd1 dans l’atrophie musculaire induite par les glucocorticoides
  
  - Delphine DUTEIL

- **IL1inMHT**: Etude du rôle vasculo-protecteur de l’IL-1β dans l’hypertension artérielle maligne
  
  - Olivia LENOIR
Chiffres-clés 2020 CE14

<table>
<thead>
<tr>
<th>Axe 3.5</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td>161 M€</td>
<td>21,7 M€ *</td>
<td>13,5 %</td>
<td>340</td>
<td>46*</td>
<td>13,5%</td>
<td></td>
</tr>
</tbody>
</table>


- Nombre de projets financés: JCJC : 11 ; PRC : 35 ; PRCE : 0
- Coût moyen d’un projet: JCJC : 304 k€ ; PRC : 525 k€
- Nbre total de partenaires financés : JCJC : 11 ; PRC : 108
- Nombre de partenaires par projet: JCJC : 1 ; PRC : 3,1
- Aide par partenaire : JCJC : 304 k€ ; PRC : 170 k€

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
3.6. Immunologie, Infectiologie et Inflammation (CE15)

Contacts : ana.navarrete@agencerecherche.fr; jean-marc.cavaillon@agencerecherche.fr

Cet axe de recherche couvre les thématiques suivantes :
• la caractérisation des acteurs moléculaires et cellulaires impliqués dans les défenses des organismes et les réactions inflammatoires au cours des réponses immunes adaptatives et innées, de manière à établir une analyse intégrée du système immunitaire en situation normale, pathologique y compris dans les déficits immunitaires, les hypersensibilités, les autoimmunités, les auto-inflammations et la transplantation. Ceci inclut l’étude mécanistique de l’effet de l’hyperactivation du système immunitaire et inflammatoire au niveau systémique.
• les mécanismes utilisés par les agents pathogènes de l’homme et des animaux pour tirer parti des facteurs cellulaires de l’hôte pour leur survie, dissémination, et transmission à l’échelle de l’organisme
• l’identification des facteurs de restriction des infections chez l’Homme et l’Animal
• le développement de nouveaux modèles et d’approches mathématiques et informatiques permettant de mieux appréhender le développement et l’homéostasie des différentes composantes du système immunitaire, l'inflammation, l’allergie et les relations hôtes-microbes à toutes les échelles (cellule, organe, organisme)
• les travaux sur la biologie fondamentale des microorganismes pouvant ouvrir la voie au développement de nouvelles approches anti-infectieuses

Mots-clés associés : défenses immunitaires, infectiologie, interactions hôtes pathogènes, inflammation, homéostasie et dérégulation, microbiologie, microbiote, symbiose/dysbiose, déficits immunitaires, allergies, processus inflammatoire, modélisation, réponse au greffon.

Codes ERC associés : LS06
ODD associés: 3,9, 14 et 15.
<table>
<thead>
<tr>
<th>Acronyme et titre du projet</th>
<th>Coordonnateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsthmAb</td>
<td>Rôle des IgE humaines et de leur récepteur FceRI dans l’asthme et sa potentialisation par l’obésité</td>
</tr>
<tr>
<td>RBPcytoMS</td>
<td>Contrôle post-transcriptionnel de la production de cytokines par les cellules B via les protéines se liant aux ARN. Rôle dans la sclérose en plaques.</td>
</tr>
<tr>
<td>FiReBird</td>
<td>Comprendre les mécanismes moléculaires de la régulation des réponses cellulaires B par le TGFβ pour l’ajustement fin de la réaction du centre germinatif</td>
</tr>
<tr>
<td>Control-CHECK</td>
<td>Modulation de la signalisation des checkpoints immunitaires dans le contexte de l’inflammation du système nerveux central</td>
</tr>
<tr>
<td>MICMAT</td>
<td>Prédicteurs de la variabilité du microbiome et leurs rôle dans les maladies inflammatoires chroniques de l'intestin</td>
</tr>
<tr>
<td>IgARescue</td>
<td>Reconstitution d’IgA dans le déficit en IgA - thérapie expérimentale visant à rétablir une écologie microbienne « saine »</td>
</tr>
<tr>
<td>CALPLYCX</td>
<td>Role des connexines et de la signalisation calcique durant la méningite à pneumocoque</td>
</tr>
<tr>
<td>CHIKHOST</td>
<td>Etude des mécanismes de l’interaction de FHL1 avec le virus chikungunya.</td>
</tr>
<tr>
<td>iMET</td>
<td>Imagerie des interactions métaboliques hôte-parasite dans le foie</td>
</tr>
<tr>
<td>BATantiVIR</td>
<td>Coévolution ancestrale et moderne entre l’immunité des chauves-souris et les virus</td>
</tr>
</tbody>
</table>
## Chiffres-clés 2020 CE15

<table>
<thead>
<tr>
<th>Axe 3.6</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>102,2 M€</td>
<td><strong>14,2 M€</strong> *</td>
<td>13,9%</td>
<td>217</td>
<td>29*</td>
<td>13,4%</td>
</tr>
</tbody>
</table>

Nombre de membres de comités AAPG2020: **30**. *La liste est publiée sur le site de l’ANR.*


- Nombre de projets financés: JCJC: 8; PRC: 20; PRCE: 1
- Coût moyen d’un projet : JCJC **340k€** ; PRC : **551k€** ; PRCE : **513k€**
- Nombre total de partenaires financés : (8 en JCJC ; 55 en PRC; 3 * en PRCE)
- Nombre de partenaires par projet : JCJC : 1 ; PRC : 2,8; PRCE * : 3
- Aide par partenaire : JCJC **320k€** ; PRC : **209k€** ; PRCE* : **177k€**

- **Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020**
- Chiffre sur la base d’un projet PRCE financé
Axe 8.3. Maladies infectieuses et environnement

Contacts : ingrid.pfeifer@agencerecherche.fr; jean-marc.cavaillon@agencerecherche.fr


Plus précisément cet axe de recherche couvre les domaines suivants:

• l’ensemble des agents pathogènes des hommes, des animaux et des plantes quels que soient leur origine (bactéries, virus, parasites, champignons, algues et agents non conventionnels) et leurs produits,

• les modalités de diffusion et d'adaptation des agents pathogènes et de leurs hôtes, les déterminants génétiques et non génétiques de la transmission, les mécanismes d’émergence des maladies infectieuses (humaines, végétales ou animales, y compris zoonoses) en lien avec les facteurs environnementaux et anthropiques,

• les méthodes de lutte, de surveillance et de prévention, d’identification des populations et des zones à risque, de préparation au risque épidémique voire pandémique, des conditions sociales des dispositifs de prise en charge des épidémies, (écologie de la santé),
Axe 8.3. Maladies infectieuses et environnement

- la modélisation des paramètres d’émergence, de diffusion, d’exposition, de transmission ou d’élimination, les analyses rétrospectives ainsi que la constitution de bases de données pouvant contribuer à la définition d’indicateurs pour une approche prédictive de l’évolution des épidémies dans le cadre de la veille sanitaire,
- les résistances aux traitements antimicrobiens, antiparasitaires, antifongiques, insecticides et biocides,
- les processus d'adaptation aux changements environnementaux chez les agents pathogènes et leurs hôtes,
- l’organisation et la résilience des systèmes de soin en santé humaine et animale, face aux risques de maladies infectieuses émergentes et ré-émergentes,
- l’impact des comportements et pratiques individuelles et collectives sur la transmission.

**Mots-clés associés** : anthropie, approches « One Health » et « Eco-Health », base de données, conditions de prévention et de gestion des maladies émergentes, différents déterminants des maladies infectieuses (biologiques, médicaux, environnementaux, sociaux…), épidémies, exposome/infections, faune sauvage, modélisation, niches, pandémies, pathogènes émergents et ré-émergents, persistance, prédiction, prise en charge, réservoirs, résistance aux agents antimicrobiens, risques, santé mondiale, spatio-temporelle, transfert d’espèces, vecteurs, virulence, zoonoses.

**Codes ERC associés** : LS01, LS02, LS06, LS07, LS08, PE06, PE10, SH02, SH03.

**ODD associés** : 1, 3, 4, 9, 10, 13, 14, 15, 16 et 17.
**Projets sélectionnés AAPG2020**

**CE 35**

**Conseil : lire aussi les titres de projets sélectionnés les années précédentes**

<table>
<thead>
<tr>
<th>Acronyme et titre du projet</th>
<th>Coordinateur</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EVCOPAR</strong> Evolution des pathogènes co-infectant le riz</td>
<td>Charlotte TOLLENAERE</td>
</tr>
<tr>
<td><strong>GENAD</strong> Adaptation génétique et histoire évolution de Plasmodium vivax en Amérique</td>
<td>Virginie ROUGERON</td>
</tr>
<tr>
<td><strong>SaDI</strong> Dynamique chromosomique chez Salmonella lors d'une Infection</td>
<td>Virginia LIOY</td>
</tr>
<tr>
<td><strong>BLA-IMPACT</strong> Impact d'une exposition aux bêta-lactamines sur les bêta-lactamasases intestinales caractérisées phénotypiquement</td>
<td>Etienne RUPPÉ</td>
</tr>
<tr>
<td><strong>dsRNA-Targets</strong> Usines de réplication virales et défense de l'hôte</td>
<td>Pascal GENSCHIK</td>
</tr>
<tr>
<td><strong>EU-CWD</strong> Evaluer et controler les risques sanitaires associés à l'émergence du CWD en Europe</td>
<td>Olivier ANDREOLETTI</td>
</tr>
<tr>
<td><strong>HOME</strong> Dynamiques de transmission intra-communautaire des Entérobactéries multirésistantes</td>
<td>Solen KERNÉIS</td>
</tr>
<tr>
<td><strong>PILGRIM</strong> Un panel de lignées consanguines pour démêler les facteurs génétiques et non génétiques du microbiote et de la capacité vectorielle d'Aedes aegypti</td>
<td>Louis LAMBRECHTS</td>
</tr>
<tr>
<td><strong>RESISTE</strong> Comprendre l'évolution de la résistance aux antimicrobiens chez les vibrios environnementaux</td>
<td>Frédérique LE ROUX</td>
</tr>
<tr>
<td><strong>RESISTRACK</strong> Contrôler l'antibiorésistance à l'hôpital : modélisation holistique et éco-évolutive de la dissémination des gènes de résistance pour optimiser les stratégies de lutte</td>
<td>Jean-Philippe RASIGADE</td>
</tr>
</tbody>
</table>
## Chiffres-clés 2020 CE35

<table>
<thead>
<tr>
<th>Axe 8.3</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42M€</td>
<td>6,84M€</td>
<td>16,3%</td>
<td>93</td>
<td>16</td>
<td>17,2%</td>
</tr>
</tbody>
</table>

*Chiffres incluant les projets retenus sur priorités nationales – et hors PRCI*


- Nombre de projets financés: JCJC: 5; PRC: 11
- Coût moyen d’un projet : JCJC **300k€** ; PRC : **486k€**
- Nombre total de partenaires financés : (5 en JCJC ; **35** en PRC)
- Nombre de partenaires financés par projet : JCJC : 1 ; PRC : 3,2
- Aide moyenne par partenaire : JCJC **300k€** ; PRC : **152k€**

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Vos questions sur les axes :

3.5. Physiologie et physiopathologie
3.6. Immunologie, Infectiologie et Inflammation
8.3. Maladies infectieuses et environnement
Axe 3.7. Neurosciences moléculaires et cellulaires - Neurobiologie du développement

Contacts : hayet.pigeon@agencerecherche.fr ; catherine.heurteaux@agencerecherche.fr

Cet axe de recherche couvre les thématiques suivantes :

- l’ensemble des études menées aux échelles moléculaires et cellulaires destinées à comprendre les mécanismes régissant la mise en place, le fonctionnement, la dynamique et la plasticité du système nerveux et des organes des sens en conditions normales ou pathologiques (composantes neurovasculaires et neuroinflammatoires incluses),

- la logique de l’assemblage hiérarchique des composants moléculaires, cellulaires et tissulaires du système nerveux et des organes des sens, les relations entre leur dynamique et leur plasticité et les propriétés fonctionnelles du système nerveux,

- la compréhension des mécanismes et l’identification des déterminants moléculaires et cellulaires impliqués dans les maladies psychiatriques, l’addiction, les maladies du neurodéveloppement et troubles du spectre autistique, les maladies neurodégénératives et les maladies rares affectant le système nerveux. Les composantes neurovasculaires et neuroinflammatoires de ces pathologies sont également incluses, à l’exception des aspects non neuronaux qui relèvent de l’axe « Physiologie et physiopathologie ».

Dans cet axe, sont considérés l’ensemble des modèles animaux invertébrés et vertébrés, ainsi que les approches expérimentales et technologiques et leur développement (imageries, computation et modèles, intelligence artificielle, comportement, électrophysiologie, pharmacologie, optogénétique etc..) afférents à ces études.


Codes ERC associés : majeure LS05, autres LS03, LS07.

ODD associés : 3, 9, 14 et 15.
<table>
<thead>
<tr>
<th>Projet</th>
<th>Titre</th>
<th>Responsable(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CorticoStriatal</td>
<td>La plasticité de la projection corticostriatale : une question de certitude?</td>
<td>Ingrid Bureau</td>
</tr>
<tr>
<td>DevandMaintain</td>
<td>Continuer à marcher: maintien de l'innervation musculaire</td>
<td>Jonathan Enriquez</td>
</tr>
<tr>
<td>DIAPASON</td>
<td>Décryptage de la signalisation purinergique dans l'épilepsie par des bio senseurs</td>
<td>Francois Rassendren</td>
</tr>
<tr>
<td>HuMANS</td>
<td>Développement du néocortex humain : migration et division asymétrique des cellules souches neurales</td>
<td>Alexandre Baffet</td>
</tr>
<tr>
<td>MAC</td>
<td>Circuits mésencéphaliques de l'anxiété</td>
<td>Sebastian FERNANDEZ</td>
</tr>
<tr>
<td>NeuroZIKA</td>
<td>Impact d’une infection par le virus Zika (ZIKV) sur les neurones et le dialogue neurone/microglie en lien avec le développement de troubles cognitifs</td>
<td>Eliette Bonnefoy</td>
</tr>
<tr>
<td>NotifX</td>
<td>Nouvelles cibles thérapeutiques dans le Syndrome de l'X Fragile</td>
<td>Barbara Bardonni</td>
</tr>
<tr>
<td>TRANSLAxon</td>
<td>Déterminer comment la traduction locale d'ARNm impacte les maladies neurodégénératives</td>
<td>Florence RAGE</td>
</tr>
</tbody>
</table>
### Chiffres-clés 2020 CE16

<table>
<thead>
<tr>
<th>Axe 3.7</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 M€</td>
<td>12,36 M€ *</td>
<td>14,04%</td>
<td>175</td>
<td>26*</td>
<td>14,86%</td>
<td></td>
</tr>
</tbody>
</table>

- Nombre de membres de comités AAPG2019: **21. La liste est publiée sur le site de l’ANR.**
  

- Nombre de projets financés: JCJC: **6**; PRC: **20**
- Coût moyen d’un projet : JCJC **315€** ; PRC : **522k€**
- Nombre total de partenaires financés : **6** en JCJC ; **58** en PRC
- Nombre de partenaires par projet : JCJC: **1** ; PRC : **3**
- Aide par partenaire : JCJC **315k€** ; PRC : **191k€**

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Axe 3.8. Neurosciences intégratives et cognitives

Contacts : morgane.bourdonnais@anr.fr; catherine.heurteaux@anr.fr

Cet axe de recherche couvre les thématiques suivantes :
• l’ensemble des études menées à l’échelle intégrative destinées à comprendre les propriétés et fonctions cérébrales de haut niveau,
• les différents niveaux d’organisation, de hiérarchie et d’interactions propres au fonctionnement du cerveau par exemple ceux mis en jeu dans l’intégration multi-sensorielle, la reconnaissance des objets et des actions, la prise de décision, la mémoire, les comportements, la cognition et l’état de conscience, les aspects spécifiques au cerveau de l’être humain y compris dans ses dimensions sociales - par exemple la conscience de soi, le langage, les relations avec autrui - et pathologiques,
• les mécanismes et les déterminants biologiques et sociaux des comportements et de l’apprentissage, des troubles de la santé mentale, des maladies du neurodéveloppement et troubles du spectre autistique, des maladies neurodégénératives, des addictions et des maladies rares affectant le système nerveux pour les prévenir et les traiter dans l’objectif de favoriser les complémentarités et les synergies entre la recherche fondamentale et les recherches précliniques et cliniques dans le domaine de la santé mentale de la psychiatrie et des addictions,
• les pathologies du système nerveux y compris les pathologies cérébrovasculaires et les pathologies des organes des sens à l’exception des aspects non neuronaux qui relèvent de l’axe « Physiologie et Physiopathologie ».

Les approches expérimentales incluent les imageries fonctionnelles et multi-modales in vivo (IRM, IRMf, PET, photonique, ultrasonore), l’électrophysiologie, les analyses computationnelles, interface cerveau-machine, intelligence artificielle, le comportement, l’optogénétique, la psychophysique, etc..)
L’approche épidémiologique des inégalités de santé en matière de santé mentale relève de l’axe « Santé publique », et les dispositifs connectés relèvent de l’axe « Technologies pour la santé ».

Mots-clés associés : cognition, comportement, neurosciences computationnelles, psychiatrie, santé mentale, maladies neurodégénératives, addictions, physiopathologie, et approches cliniques, études transversales.

Codes ERC associés : majeure LS05, autres LS07, SH04.
### Projets sélectionnés AAPG2020

#### CE 37

**Conseil : lire aussi les titres de projets sélectionnés les années précédentes**

<table>
<thead>
<tr>
<th>Projet</th>
<th>Titre</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FUSOT</strong></td>
<td>Effet de l'ocytocine sur le comportement social des primates: une étude combinant IRMf à ultra-haute résolution et ultrasons focalisés chez les macaques</td>
<td>Qi ZHU</td>
</tr>
<tr>
<td><strong>NICADO</strong></td>
<td>Effets à long terme de la nicotine sur le cerveau jeune et adulte dans un contexte de troubles psychiatriques</td>
<td>Jacques BARIK</td>
</tr>
<tr>
<td><strong>CC-RNN</strong></td>
<td>Explorer l'apprentissage moteur cérébello-cortical avec des réseaux de neurones récurrents</td>
<td>N Alex CAYCO GAJIC</td>
</tr>
<tr>
<td><strong>SleepinBrainDyn</strong></td>
<td>Dynamiques des interactions baso-corticales pendant le sommeil dans l'apprentissage sensorimoteur</td>
<td>Nicolas GIRET</td>
</tr>
<tr>
<td><strong>MENTALIST</strong></td>
<td>Mécanismes neurophysiologiques sous-jacents à la fatigue mentale induite par l'utilisation prolongée du smartphone</td>
<td>Romuald LEPERS</td>
</tr>
<tr>
<td><strong>BERGMANnCO</strong></td>
<td>Rôle des interactions neurogliales dans le contrôle cérébelleux des fonctions cognitives</td>
<td>Christelle ROCHEFORT</td>
</tr>
<tr>
<td><strong>TOPLEX</strong></td>
<td>Origines de la spécialisation pour la lecture dans le cortex occiptotemporal</td>
<td>Laurent COHEN</td>
</tr>
</tbody>
</table>
### Chiffres-clés 2020 CE37

<table>
<thead>
<tr>
<th>Axe 3.8</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69,5M€</td>
<td>9,8M€ *</td>
<td>14,2%</td>
<td>151</td>
<td>23*</td>
<td>15,23%</td>
</tr>
</tbody>
</table>

- Nombre de membres de comités AAPG2019: **19**. *La liste est publiée sur le site de l’ANR.*  
- Nombre de projets financés: JCJC: 8; PRC: 15; PRCE: 0
- Coût moyen d’un projet : JCJC **279k€** ; PRC : **507k€** ; PRCE : **N/A**
- Nombre total de partenaires financés : (8 en JCJC ; 39 en PRC )
- Nombre de partenaires par projet : JCJC : **1** ; PRC : **2,6**
- Aide par partenaire : JCJC **279k€** ; PRC : **167k€** ;

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Vos questions sur les axes :

3.7. Neurosciences moléculaires et cellulaires – Neurobiologie du développement

3.8. Neurosciences intégratives et cognitives
Axe 3.9. Recherche translationnelle en santé

**Contacts :** loreline.robbe@agencerecherche.fr ; matthieu.levi-strauss@agencerecherche.fr

L’objectif de cet axe de recherche est le financement d'études se situant en aval des projets exploratoires des laboratoires de recherche et en amont des projets cliniques soutenus par le Programme hospitalier de recherche clinique (PHRC) de la DGOS.

Sont examinés des projets qui permettent la formulation de nouvelles hypothèses susceptibles d'être testées ultérieurement dans le cadre d'une recherche clinique, et donc situées à l'interface entre la recherche fondamentale et la recherche clinique. Une demande de cofinancement par la DGOS peut être faite pour les projets incluant un établissement de santé partenaire.

**Cofinancement ANR-DGOS possible + Priorité stratégique projets « maladie rare ».

**Mots-clés associés :** nouvelles approches thérapeutiques, nouvelles approches diagnostiques, physiologie, physiopathologie, médecine personnalisée, preuves de concept pré-cliniques, biomarqueurs, épidémiologie, cohortes.

**Codes ERC associés :** majeure LS07, autre LS04.

**ODD associé :** 3.
<table>
<thead>
<tr>
<th>PRCE</th>
<th>Projets sélectionnés AAPG2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>CE 17</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronyme et titre du projet</th>
<th>Coordonné</th>
<th>Coordonné</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MR-A-MD</strong></td>
<td>Francine BEHAR-COHEN</td>
<td></td>
</tr>
<tr>
<td>Vers une évaluation clinique des antagonistes du récepteur minéralocorticoïde dans la DMLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Neurovita-SLA</strong></td>
<td>Monique LAFON</td>
<td></td>
</tr>
<tr>
<td>Développement d'une molecule thérapeutique innovante pour le traitement d'une maladie rare: la SLA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRC</th>
<th>Projets sélectionnés AAPG2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Ce 17</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronyme et titre du projet</th>
<th>Coordonné</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ASDecode</strong></td>
<td>Frédéric LAUMONNIER</td>
</tr>
<tr>
<td>Approches translationnelles pour la caractérisation de la voie PTCHD1 impliquée dans les troubles neurodéveloppementaux</td>
<td></td>
</tr>
<tr>
<td><strong>CA-Ts</strong></td>
<td>Luc DUPUIS</td>
</tr>
<tr>
<td>Rôle des microsatellites à répétition CA dans les maladies liées à FUS et TDP-43</td>
<td></td>
</tr>
<tr>
<td><strong>DeepECG4U</strong></td>
<td>Edi PRIFTI</td>
</tr>
<tr>
<td>Identification des patients à risque de torsade de pointes, une arythmie potentiellement mortelle, grâce à l'apprentissage profond des ECG</td>
<td></td>
</tr>
<tr>
<td><strong>DEVINET</strong></td>
<td>Patrice PÉRAN</td>
</tr>
<tr>
<td>Développement et validation d'une imagerie multimodale du tronc cérébral pour explorer la microstructure tissulaire</td>
<td></td>
</tr>
<tr>
<td><strong>dIAg-EM</strong></td>
<td>Vincent MOTTO-ROS</td>
</tr>
<tr>
<td>Diagnostique médical par intelligence artificielle appliquée à la microscopie LIBS élémentaire</td>
<td></td>
</tr>
<tr>
<td><strong>ELECTRO</strong></td>
<td>Fabien BRETTE</td>
</tr>
<tr>
<td>Inhibition de l'Exchange Protein directly activated by cAMP -1 pour traiter la Fibrillation Atrial</td>
<td></td>
</tr>
<tr>
<td><strong>HemoLen</strong></td>
<td>Mario AMENDOLA</td>
</tr>
<tr>
<td>Amélioration des stratégies de thérapie génique basées sur l'utilisation des cellules souches hématopoïétiques pour le traitement des $\beta$-hémoglobinopathies.</td>
<td></td>
</tr>
<tr>
<td>Acronyme et titre du projet</td>
<td>Coordinateur</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BOOSTIVF</td>
<td>Thomas FREOUR</td>
</tr>
<tr>
<td>Analyse combinée des données morphologiques et moléculaires lors du développement préimplantatoire humain afin d’améliorer la FIV</td>
<td></td>
</tr>
<tr>
<td>CDMNP</td>
<td>Jerome MARTIN</td>
</tr>
<tr>
<td>Disséquer l’hétérogénéité des phagocytes mononucléés dans la maladie de Crohn</td>
<td></td>
</tr>
<tr>
<td>COMSIGN</td>
<td>Sophie CHAUVET</td>
</tr>
<tr>
<td>Signature moléculaire de l’activation des convertases dans les glomérulopathies complément dépendentes</td>
<td></td>
</tr>
<tr>
<td>DYSCLLO</td>
<td>Thomas BLAUWBLOMME</td>
</tr>
<tr>
<td>Dérégulation du chlore dans les dysplasies corticales focales</td>
<td></td>
</tr>
<tr>
<td>GIJAW</td>
<td>Pierre CORRE</td>
</tr>
<tr>
<td>Ciment composite personnalisé par impression 3D pour la réparation des mâchoires</td>
<td></td>
</tr>
<tr>
<td>GLIOMRS</td>
<td>Francesca BRANZOLI</td>
</tr>
<tr>
<td>Marqueurs d’imagerie spectroscopique par résonance magnétique de la génomique du gliome</td>
<td></td>
</tr>
<tr>
<td>HYMAGE-IPF</td>
<td>Pierre-Simon BELAYE</td>
</tr>
<tr>
<td>L’hypoxie et l'activation alternative des macrophages comme nouvelles cibles d’imagerie moléculaire pour le suivi de l’efficacité thérapeutique de la fibrose pulmonaire</td>
<td></td>
</tr>
</tbody>
</table>

Conseil : lire aussi les titres de projets sélectionnés les années précédentes
### Chiffres-clés 2020 CE17

<table>
<thead>
<tr>
<th>Axe 3.9</th>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>112,5M€</td>
<td>18,8M€ *</td>
<td>16,7%</td>
<td>241</td>
<td>40*</td>
<td>16,6%</td>
</tr>
</tbody>
</table>

Nombre de membres de comités AAPG2019: **23. La liste est publiée sur le site de l’ANR.**


- Nombre de projets financés: JCJC: 11 ; PRC: 26 ; PRCE: 3
- Coût moyen d’un projet : JCJC **291k€** ; PRC : **512k€** ; PRCE : **515k€**
- Nombre total de partenaires financés : (7 en JCJC ; 84 en PRC ; 4 en PRCE)
- Nombre moyen de partenaires par projet : JCJC : 1 ; PRC : 3,7 ; PRCE : 2
- Aide moyenne par partenaire : JCJC **332k€** ; PRC : **142k€** ; PRCE : **251k€**

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Axe 3.10. Innovation Biomédicale

Contacts : marie-pierre.gosselin@agencerecherche.fr; matthieu.levi-strauss@agencerecherche.fr

Cet axe de recherche couvre les thématiques suivantes :

- l'étude et la validation de nouvelles cibles thérapeutiques,
- la conception et le développement de produits thérapeutiques chimiques ou biologiques (y compris vaccins, thérapie cellulaire et médecine régénérative, thérapie génique, nanomédecine),
- les nouveaux formats de biomédicaments optimisés pour les procédés de production,
- les modèles animaux et les organoïdes pertinents pour l'évaluation biologique et/ou préclinique de produits d'intérêt thérapeutique,
- les modalités de prévention vaccinale,
- les outils et produits de diagnostic et de prévention,
- les biomarqueurs.

Mots-clés associés : thérapie cellulaire, nouvelles cibles thérapeutiques, drug-design, thérapie génique, nanomédecine, médecine régénérative, ingénierie tissulaire, vaccins, biotechnologies, biomarqueurs, pharmacologie, pharmacochimie, adjuvants, vecteurs, anticorps, biomédicaments, bioproduction.

Codes ERC associés : LS07
ODD associés: 3 et 9
Projets sélectionnés AAPG2020
CE18

Conseil : lire aussi les titres de projets sélectionnés les années précédentes

<table>
<thead>
<tr>
<th>Acronyme et titre du projet</th>
<th>Coordinateur</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NANOSEPSIS</strong></td>
<td>François FAY</td>
</tr>
<tr>
<td>Développement d'une nanothérapie pour la modulation de la réponse immunitaire pendant le sepsis</td>
<td></td>
</tr>
<tr>
<td><strong>EXCALYBUR</strong></td>
<td>Teresa SIMON-YARZA</td>
</tr>
<tr>
<td>Matrice extracellulaire dans la maladie cardiaque: des polysaccharides pour réparer le coeur</td>
<td></td>
</tr>
<tr>
<td><strong>DETONATOR</strong></td>
<td>Alexandra AUBRY</td>
</tr>
<tr>
<td>Décryptage du mode d'action de nouveaux antituberculaires prometteurs</td>
<td></td>
</tr>
<tr>
<td><strong>EpiKillMal</strong></td>
<td>Paola ARIMONDO</td>
</tr>
<tr>
<td>Cibler la méthylation de l'ADN pour contrer la chimiorésistance du paludisme</td>
<td></td>
</tr>
<tr>
<td><strong>Nano4Schizo</strong></td>
<td>Philippe RONDARD</td>
</tr>
<tr>
<td>Les nanobodies des récepteurs mGlu comme agents pharmacologiques innovants pour le traitement des symptômes de la schizophrénie</td>
<td></td>
</tr>
<tr>
<td><strong>MIAT</strong></td>
<td>Alexis BROISAT</td>
</tr>
<tr>
<td>Imagerie Moléculaire de l'Athérothrombose</td>
<td></td>
</tr>
<tr>
<td><strong>RetinaCARE</strong></td>
<td>Thierry BORDET</td>
</tr>
<tr>
<td>Développement préclinique d'une thérapie génique non-virale innovante pour le traitement des dégénérescences rétiniennes</td>
<td></td>
</tr>
<tr>
<td><strong>ZENiTh</strong></td>
<td>Guillaume VAN NIEL</td>
</tr>
<tr>
<td>Le poisson zèbre comme modèle d'évaluation du potentiel thérapeutique des exosomes</td>
<td></td>
</tr>
<tr>
<td>Axe 3.10</td>
<td>Aides demandées en étape I (pré-propositions éligibles)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>114,4 M€</td>
</tr>
</tbody>
</table>

- Nombre de membres de comités AAPG2020: **33. La liste est publiée sur le site de l’ANR.**
  

- Nombre de projets financés: JCJC: 7; PRC: 22; PRCE: 8
- Coût moyen d’un projet : JCJC **265k€** ; PRC : **487k€** ; PRCE : **534k€**
- Nombre total de partenaires financés : (7 en JCJC ; 61 en PRC ; 27 en PRCE)
- Nombre de partenaires par projet : JCJC : 1 ; PRC : 2,7 ; PRCE : 3,3
- Aide moyenne par partenaire : JCJC **265k€** ; PRC : **175k€** ; PRCE : **158k€**

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Cet axe de recherche permet de soutenir des actions de recherche interdisciplinaires couvrant les champs des sciences de l’ingénierie et des systèmes appliquées à de nouveaux concepts, outils, méthodes en technologies pour la santé dans les domaines suivants:

- l’instrumentation, les systèmes de détection et les agents d’imagerie anatomique, fonctionnelle, cellulaire et moléculaire d’intérêt médical et leur intégration en multimodalités,

- les technologies associées à des dispositifs permettant d’améliorer l’efficacité du criblage, la délivrance de médicaments vectorisés, ou les procédés de bioproduction,

- l’implantation dans (ou sur) le vivant de système diagnostic et d’analyse (capteurs embarqués) et de thérapie,

- les biomatériaux liés ou non à la médecine régénérative,

- les procédés de fabrication et les dispositifs associés aux organoïdes,
Domaines transversaux: Technologies pour la santé

- les technologies de diagnostic et d’analyse in vitro, leur implantation dans le vivant, les aspects biomatériaux liés à la médecine régénérative,

- les technologies chirurgicales incluant la télé opération, les matériaux et appareils associés, les dispositifs implantables, les dispositifs de suppléance fonctionnelle et les prothèses,

- les technologies pour l’e-santé et en particulier pour la mesure de l’exposome,

- la compensation du handicap et l’autonomie.

Les projets PRCE prenant en compte les applications des recherches proposées et leur possible valorisation sont adaptés à cet axe.

**Mots-clés associés**: dispositifs médicaux, biocapteurs et instruments de monitoring, imagerie médicale, outils de stimulation, traitement du signal et des images, biomatériaux/biomécanique, domotique, équipements à domicile, handicap, e-santé, informatique médicale, bio-impression, médecine régénératrice

**Codes ERC associés**: LS07

ODD associés: 3,9, 10 et 12.
<table>
<thead>
<tr>
<th>Projets sélectionnés AAPG2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>ABiMed</strong></th>
<th>Aide au Bilan de Médication</th>
<th>Jean-Baptiste Lamy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BIOFISS</strong></td>
<td>Développement d'un biomatériaux pour la prévention des fistules salivaires en chirurgie cervico-faciale</td>
<td>Agnès Dupret-Bories</td>
</tr>
<tr>
<td><strong>CARDIOLOOP</strong></td>
<td>Mesure non-invasive du travail du cœur par boucle</td>
<td>Clément Papadacci</td>
</tr>
<tr>
<td></td>
<td>elasticité-déformation validée avec imagerie TEP et boucle pression-volume</td>
<td></td>
</tr>
<tr>
<td><strong>CPlay</strong></td>
<td>Outils pour la rééducation fonctionnelle du membre supérieur pour l’enfant atteint de paralysie cérébrale et troubles afférents</td>
<td>Mehdi Ammi</td>
</tr>
<tr>
<td><strong>DEVISE</strong></td>
<td>De la réadaptation aux systèmes d'aide visuelle pour les personnes déficientes visuelles (« basse vision ») : solutions innovantes intégrées dans un environnement de Réalité Virtuelle</td>
<td>Eric Castet</td>
</tr>
<tr>
<td><strong>DROMOS</strong></td>
<td>Microfluidique textile en gouttes pour le criblage d’organoïdes à haut débit.</td>
<td>Jean-louis Viovy</td>
</tr>
</tbody>
</table>
### Chiffres-clés 2020 CE19

<table>
<thead>
<tr>
<th>Aides demandées en étape I (pré-propositions éligibles)</th>
<th>Somme des aides allouées pour les propositions retenues</th>
<th>% aides propositions sélectionnées</th>
<th>Nombre de pré-propositions éligibles en phase I</th>
<th>Nombre de propositions retenues pour financement</th>
<th>% nombre de propositions sélectionnées</th>
</tr>
</thead>
<tbody>
<tr>
<td>112,8 M€</td>
<td>14,2 M€ *</td>
<td>12,6%</td>
<td>226 (+35)</td>
<td>29*</td>
<td>12,8%</td>
</tr>
</tbody>
</table>

- Nombre de membres de comités AAPG2019: **29. La liste est publiée sur le site de l’ANR.**
- Nombre de projets financés: JCJC: 7; PRC: 12; PRCE: 10
- Coût moyen d’un projet : JCJC **268k€** ; PRC : **496k€** ; PRCE : **646k€**
- Nombre total de partenaires financés : (7 en JCJC ; **38** en PRC ; **43** en PRCE)
- Nombre de partenaires par projet : JCJC : 1 ; PRC : 3,2 ; PRCE : 4,3
- Aide par partenaire : JCJC **268k€** ; PRC : **155k€** ; PRCE : **150k€**

* Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020
Vos questions sur les axes :

3.9 Recherche translationnelle

3.10 Innovation Biomédicale

8.7 Technologie pour la santé
Thèmes principaux :

Analyser et de comprendre le rôle des trajectoires et différents déterminants (sociaux économiques, comportementaux, environnementaux, systèmes de santé, accès aux soins et aux droits...) et leurs interactions sur le bien-être, la vulnérabilité, la santé, la genèse et la réduction des inégalités tout au long de la vie.

Proposer des cadres d’analyse de l’impact de multiples déterminants sur la santé, y compris mentale, et les situations de handicap, aux différents âges de la vie.

Evaluer les risques, de proposer des méthodes de surveillance, d’anticipation, de prévention, d’évaluation et d’adaptation des politiques, systèmes et services de santé (y compris en soins primaires) en contexte ordinaire ou de crise (épidémie, conflit etc.), et d’évaluer les politiques de santé.

Proposer des travaux sur l’organisation des services de santé et médico-sociaux et plus globalement sur le système de santé (efficience, performance, accès, équité, impact sur les personnes, etc.).
### AXE TRANSVERSE 8.4 : SANTÉ PUBLIQUE, SANTÉ ET SOCIÉTÉS

#### AAPG 2020

**Nombre total de projets évalués en étape 1 : 74**

**Nombre total de projets évalués en étape 2 : 33**

<table>
<thead>
<tr>
<th>INSTRUMENTS</th>
<th>Étape 1</th>
<th>Étape 2</th>
<th>Projets financés</th>
<th>Taux de succès</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCJC</td>
<td>27</td>
<td>9</td>
<td>3</td>
<td>11,11%</td>
</tr>
<tr>
<td>PRC</td>
<td>44</td>
<td>21</td>
<td>9</td>
<td>20.45%</td>
</tr>
<tr>
<td>PRCE</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>74</td>
<td>33</td>
<td>12</td>
<td>16.21%</td>
</tr>
</tbody>
</table>

* *Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020*
## Coût moyen des projets
**AAPG 2020**

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Coût moyen projet</th>
<th>Fourchette Basse</th>
<th>Fourchette Haute</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCJC</td>
<td>239 K€</td>
<td>128K</td>
<td>356K</td>
</tr>
<tr>
<td>PRC</td>
<td>379 K€</td>
<td>110K</td>
<td>891K</td>
</tr>
</tbody>
</table>
Vos questions sur l’axe:

Santé publique, santé et sociétés
Cet axe permet de soutenir des projets de recherche interdisciplinaires associant des recherches et développements innovants dans les domaines de la biologie et de la santé, à l’élaboration de concepts et au développement de nouvelles méthodes en mathématique, informatique, automatique, physique, ou traitement du signal. Les projets déposés pourront concerner :

• Le développement de méthodes pour la collecte, l’extraction, la gestion, la sécurisation, l’appariement de données massives ou hétérogènes issues de sources diverses allant de la biologie omique, aux bases médico-administratives de données de santé (Système national des données de Santé) ou de tout autre source de données personnelles de santé pour la recherche préclinique, clinique, populationnelle ou épidémiologique, ou d’aide à la décision,

• l’analyse et la modélisation des données issues des approches omiques (transcriptomique, protéomique, ...), de biologie structurale, de la microscopie cellulaire et tissulaire, de l’imagerie ou de l’e-santé et la visualisation virtuelle et augmentée de ces données complexes multimodales, multi-échelles et de fort contenu,
• le traitement des signaux et images médicales pour la segmentation, l’extraction et la caractérisation de l’information contenue, ainsi que la fusion d’informations multimodales, multi-échelles, morpho-fonctionnelles, dans l’objectif d’approfondir les connaissances en biologie et/ou de développer de nouvelles approches d’intérêt médical,

• l’analyse quantitative et la modélisation de processus biologiques et physiologiques permettant le développement d’approches prédictives en biologie et en santé, ainsi que les méthodes permettant leur confrontation aux données expérientiales, en particulier, l’assimilation de données et les approches d’apprentissage automatique,

• la simulation des systèmes biologiques complexes à l’aide du calcul scientifique et haute performance et l’optimisation associée, la simulation immersive (virtuelle et augmentée).
Mots-clés : big data en biologie, apprentissage automatique à large échelle et intelligence artificielle pour les sciences du vivant, aide à la prise de décision, analyse prédictive, analyse et traitement de signaux et d’images, modélisations de processus biologiques, simulation en biologie, propriétés émergentes des systèmes biologiques, biologie computationnelle, bio-informatique, bio-mathématiques, e-santé, informatique médicale.

Codes ERC associés : LS01, LS02, LS03, LS05, LS07, PE01, PE06, PE07.
8.5. Mathématiques et sciences du numérique pour la biologie et la santé (CES 45)

Nombre de membres du comité 45 : 21

<table>
<thead>
<tr>
<th></th>
<th>Aide demandée Phase 1</th>
<th>Aide allouée</th>
<th>% aide</th>
<th>Nombre de pré-propositions éligibles phase I</th>
<th>Nb propositions retenues</th>
<th>Taux de sélection</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5 CES 45</td>
<td>58,4 M€</td>
<td>8,8 M€</td>
<td>15 %</td>
<td>147</td>
<td>23</td>
<td>15,6 %</td>
</tr>
</tbody>
</table>

- Coût moyen d’un projet financé :
  - JCJC 263 k€
  - PRC : 454 k€
  - PRCE : 557 k€

*Chiffres provisoires incluant les projets retenus sur priorités nationales et hors PRCI au 20/10/2020*
Vos questions

Merci de votre participation à ce webinaire