

STRATEGIE INNOVATION SANTÉ 2030

Chaires d'excellence en Biologie / Santé :

15 nouveaux chercheurs et chercheuses distingués

Juillet 2025

CHIFFRES

260

lettres d'intention déposées en phase 1

22

candidats présélectionnés

15

lauréats - 7 femmes et 8 hommes

236 ME

de financement de France 2030

+ de 10

thématiques de recherche:
Biologie intégrative; Biologie cellulaire,
du développement, cellules souches et
régénération; Physiologie de la santé, de la
maladie et du vieillissement; Neurosciences
et troubles du système nerveux; Immunité,
infection et immunothérapie;
Prévention, diagnostic et traitement des
maladies humaines

Liste des 15 lauréats

LAURÉATS	ÉTABLISSEMENT COORDINATEUR	PROJET DE RECHERCHE FINANCÉ
Guillaume Canaud Professeur de médecine, Université Paris Cité, Institut Necker	Université Paris Cité	KRASY - Thérapies ciblées pour les patients porteurs de malformations vasculaires secondaires à une mutation somatique de KRAS
Stéphanie Debette Professeur PU-PH d'épidémiologie, neurologie, Institut du Cerveau	Institut du Cerveau	ND-VASC - Déterminer les mécanismes molécu- laires et cellulaires de la contribution vasculaire aux maladies neurodégénératives
Daniele Fachinetti DR CNRS, Institut Curie	CNRS	CREATE - Révéler le rôle des altérations du centromère humain dans des contextes physiopathologiques
Sonia Garel Professeur au Collège de France (CIRB), IBENS	Collège de France	MicroProtect - Décrypter les fonctions neuroprotec- trices des microglies : du développement cérébral aux maladies neurodégénératives
Simonetta Gribaldo Professeur, Institut Pasteur	Institut Pasteur	HUMAN-ARCHAEA - Élucider les acteurs clés de la croissance cellulaire et de la division chez les archées associées à l'homme
Sandrine Humbert DR Inserm, Institut du Cerveau	Institut du Cerveau	DEVHD - Élucider l'évolution de la maladie de Huntington de l'embryogenèse à l'âge adulte
Paschalis Kratsios Professeur associé, Université de Chicago (USA), mobilité vers l'UMR MeLiS Lyon	CNRS	MoDiNIMaD - Dissection moléculaire du maintien et de la dégénérescence de l'identité neuronale
Marc Lecuit Professeur de médecine, Université Paris Cité, Hôpital Necker, Institut Pasteur	Institut Pasteur	FIDELIO - Destin des cellules infectées in vivo : mécanismes et conséquences
Nicolas Manel DR Inserm, Institut Curie	Institut Curie	DIVIS - Détection des virus par l'immunité innée intracellulaire
Patrick Melhen DR CNRS, Centre Recherche Cancer Léon Bérard	CNRS	CANCERNET - Cibler la nétrine-1 pour atténuer la résistance au cancer
Hélène Morlon DR CNRS, IBENS	École normale supérieure	PlankDiv - Diversification du plancton eucaryote océanique
Julien Prudent Medical Research Council Investigator, Université de Cambridge (UK) mobilité vers l'Institut IMAGINE, Necker enfants malades, Paris	Institut des Maladies Génétiques Necker Enfants Malades	MitoDNA-QC - Investigation de l'interaction entre le contrôle qualité de la membrane interne mitochon- driale, les niveaux d'ADNmt et l'hétéroplasmie
Benjamin Prud'homme DR CNRS, Institut de biologie du développement, Marseille	CNRS	TranSpot - Révéler les mécanismes de transvection dans la régulation des gènes sexuellement dimor- phiques liés au chromosome X
Nathalie Rochefort Professeur de Neurosciences Université d'Edinburgh (UK); mobilité vers l'Institut de la vision, Paris	Sorbonne Université	VisionInAction - Encodage des images naturelles de la rétine au cortex visuel
Céline Vallot DR CNRS, Institut Curie	CNRS	BreastCancerStart - Mécanismes de plasticité cellulaire dans l'initiation du cancer du sein

MBreastCancerStart (BCS)

Mécanismes de plasticité cellulaire dans l'initiation du cancer du sein

L'« initiation tumorale », c'est-à-dire la première étape de développement d'un cancer au sein d'une cellule saine, n'est pas uniquement déterminée par les altérations génétiques. La capacité de chaque cellule et tissu à gérer ces mutations est également un élément clef. La plasticité cellulaire intrinsèque - c'est-à-dire la capacité d'une cellule à s'adapter en accédant à des programmes d'expression des gènes alternatifs - semble être l'un des facteurs déterminants de la pénétration – ou non - du stress oncogénique. Ces mécanismes restent mal compris car nous avons à ce stade trop peu de moyens d'observer l'initiation tumorale chez l'homme. Le projet BreastCancerStart propose d'identifier les mécanismes qui maintiennent l'intégrité de la lignée cellulaire sous stress oncogénique chez l'homme. En effet, mieux comprendre ces mécanismes pourrait permettre d'explorer leur potentiel thérapeutique pour retarder l'initiation tumorale.

© Thomas Raffoux

Céline Vallot

Céline Vallot est directrice de recherche au CNRS. Avec son équipe à l'Institut Curie, elle étudie les mécanismes d'adaptation des cellules cancéreuses grâce à des approches en cellules uniques et computationelles. Lauréate de bourses européennes ERC (Starting et Consolidator), elle s'intéresse aux mécanismes épigénétiques d'initiation tumorale et de résistance aux traitements anti-cancéreux. Lauréate de la médaille CNRS de l'Innovation en 2022, elle est aussi la fondatrice de la start up One Biosciences qui apporte les analyses à haute resolution en cellule unique en clinique en temps reel, pour aider à choisir les traitements les plus pertinents.

CANCERNET

Cibler la protéine nétrine-1 pour atténuer la résistance aux traitements anti-cancéreux

Au cours des deux dernières décennies, le rôle des protéines/voies embryonnaires dans la formation des tumeurs (tumorigenèse) a été mis en évidence et des médicaments ciblant ces protéines ont été mis au point. Cela a conduit à l'évaluation clinique de ce que l'industrie pharmaceutique appelle des médicaments biologiques de développement avec, dans certains cas, un bénéfice clinique pour les patients. Le point de vue actuel est que pendant la tumorigenèse, la réactivation des processus de développement embryonnaire des cellules se produit. La netrine-1 joue un rôle important dans la prolifération et la migration des cellules et est ainsi impliquée dans la tumorigenèse. La régulation de cette molécule est stimulée/surexprimée dans une grande partie des cancers humains et favoriserait la survie des cellules cancéreuses en bloquant leur mort cellulaire (apoptose) induite par les récepteurs de la netrine-1. Une stratégie thérapeutique intéressante pourrait donc consister à bloquer l'interaction entre la nétrine-1 et le récepteur. Un anticorps bloquant la nétrine-1 est actuellement évalué dans le cadre de plusieurs essais cliniques. Le projet CANCERNET vise à approfondir l'impact clinique du ciblage de l'interaction netrine-1/ récepteur dans le cancer, dans le but ultime de prévenir la résistance aux traitements et la rechute.

© Cyrille George Jerusalmi

Patrick Mehlen

Patrick Mehlen est directeur de chercheur CNRS classe exceptionnelle, spécialisé en cancérologie. Diplômé de l'École Normale Supérieure de Lyon, il soutient sa thèse de sciences en 1995. Lors de son post-doctorat en Californie avec son mentor Dale Bredesen, il met en évidence en étudiant le couple DCC/ netrin-1, le concept des récepteurs à dépendance : ceux capables d'induire un signal de mort cellulaire lorsque leur ligand respectif est absent. De retour à Lyon, il contribue à l'identification de la plupart des récepteurs à dépendance connus avec sa propre équipe de recherche. Il démontre l'importance de ce mécanisme de mort à la fois au cours du développement embryonnaire et dans la régulation de la progression tumorale. Sur cette observation, il a développé une stratégie anti-tumorale visant à bloquer l'interaction netrin-1/récepteurs qui, aujourd'hui, est testée dans plusieurs essais cliniques de phase 2. Patrick Mehlen dirige le Centre de recherche en cancérologie de Lyon (CRCL) depuis 2019. Il est également directeur du Laboratoire d'Excellence DEVweCAN et directeur de l'Institut Rabelais pour la recherche interdisciplinaire en cancérologie (Institut Convergence) à Lyon et directeur de la Fondation Synergie Lyon Cancer. Il fait partie de plusieurs conseils scientifiques internationaux et a reçu de nombreux prix parmi lesquels : les médailles de Bronze puis d'Argent du CNRS, la Médaille d'Or du pape Pi XI (Académie des sciences du Vatican), le Grand Prix de la Fondation Bettencourt-Schueller pour les Sciences du Vivant, le Prix Duquesne, le Grand Prix de la Fondation de la Recherche Médicale. Il est membre de l'EMBO depuis 2006 et de l'Académie des sciences depuis 2013.

CREATE

Révéler le rôle des altérations du centromère humain dans des contextes physiopathologiques

La préservation de l'intégrité du génome et d'un caryotype chromosomique correct est cruciale pour le développement humain et la santé. En effet, on retrouve à l'origine de nombreux cancers et du vieillissement une anomalie chromosomique appelée aneuploïdie, caractérisant une cellule possédant un nombre anormal de chromosomes. Ces anomalies résultent généralement d'erreurs survenant lors de la division cellulaire. Comment les cellules préviennent l'émergence de l'aneuploïdie et de l'instabilité génomique ? Le centromère, région présente sur chaque chromosome humain, serait la clé pour éclairer ces questions. Le centromère est essentiel à la ségrégation des chromosomes, étape garantissant la distribution correcte de l'information génétique. Malgré leur rôle fondamental dans la division cellulaire, les centromères constituent des zones sensibles pour les réarrangements chromosomiques et pourraient jouer un rôle dans la genèse de l'instabilité génomique. Le projet de recherche CREATE dévoilera de nouveaux aspects de la biologie des centromères, au-delà de leur rôle bien connu dans la ségrégation des chromosomes, en révélant des conditions dans lesquelles les centromères sont potentiellement les régions les plus fragiles du génome. En établissant de nouveaux liens entre les centromères, l'aneuploïdie, la sénescence, le vieillissement et l'instabilité génomique, ces découvertes pourraient offrir de nouvelles perspectives dans la lutte contre des maladies telles que le cancer et les troubles génétiques, en fournissant de nouvelles cibles thérapeutiques.

Daniele Fachinetti

Daniele Fachinetti est drecteur de recherche au CNRS et dirige le groupe « Mécanismes Moléculaires de la Dynamique des Chromosomes » à l'Institut Curie à Paris. Ses recherches portent sur les mécanismes génétiques et épigénétiques qui assurent la fidélité de l'héritage chromosomique ainsi que sur les processus qui gouvernent la stabilité du génome. Il a apporté plusieurs contributions majeures à la compréhension de la fonction et de l'intégrité du centromère, ainsi que de leurs implications dans le cancer et la santé humaine. Son laboratoire adopte des approches interdisciplinaires, combinant biologie moléculaire, génétique, physique et biochimie pour étudier la ségrégation des chromosomes et la prévention de l'instabilité génomique. Auteur de plus de 50 publications et membre du programme EMBO YIP, il est reconnu pour son leadership dans le domaine de la stabilité génomique et ses contributions à la compréhension des bases moléculaires de la dynamique des chromosomes.

DEVHD

Élucider l'évolution de la maladie de Huntington de l'embryogenèse à l'âge adulte

La maladie de Huntington (MH), maladie héréditaire et rare, se caractérise par une dégénérescence neurologique provoquant d'importants troubles moteurs, cognitifs et psychiatriques. L'un des mystères de cette maladie est son apparition à l'âge adulte, généralement entre 30 et 50 ans. En effet, la MH est causée par une mutation du gène codant pour une protéine nommée « huntingtine », cruciale pour la croissance neuronale de sorte que l'on pourrait s'attendre à ce que le développement cérébral soit altéré. Des études de modèles animaux ont montré que le développement du cerveau est effectivement altéré dans la MH. Ces études corroborent des résultats préliminaires qui mettent en évidence que la MH altère bien le développement du cerveau chez l'homme. L'hypothèse de travail du projet DEVHD est que le cerveau MH en développement forme des circuits défectueux incapables de plasticité pendant ce que l'on appelle les « périodes critiques ». L'objectif est d'identifier d'autres périodes critiques altérées dans la MH et de déterminer, chez la souris, si leur rétablissement retarde l'apparition des signes liés à la MH. Il n'existe à ce jour aucun traitement pour les maladies neurodégénératives. Ce projet aidera à comprendre la cascade pathogène, du développement du cerveau à sa maturité, ce qui est essentiel si nous voulons traiter la MH ou empêcher que celle-ci ne se développe.

Sandrine Humbert

Le Dr Humbert dirige une équipe à l'Institut du cerveau à Paris, ICM. Ingénieure de formation, Sandrine Humbert a travaillé pendant son doctorat sur les facteurs de transcription (JM Egly, IGBMC, Strasbourg) puis effectué deux séjours post-doctoraux (LH Tsai, Harvard Medical School, Boston et F Saudou, Institut Curie, Orsay) au cours desquels elle s'est intéressée au développement du cerveau et aux processus neurodégénératifs. Depuis 2009, son équipe combine des approches cellulaires et l'analyse de modèles murins pour comprendre les mécanismes sous-jacents mis en œuvre dans la maladie de Huntington, une maladie neurologique héréditaire. Au cours des dix dernières années, la principale contribution de son équipe a été de montrer qu'en dépit d'une apparition à l'âge adulte, le développement du cerveau est affecté dans la maladie de Huntington et que ces altérations développementales contribuent à la pathologie adulte.

Immunologie et infectiologie

DIVIS

Détection des virus par l'immunité innée intracellulaire

Les pandémies virales nous rappellent régulièrement qu'il est indispensable de comprendre les interactions entre le virus et l'hôte et de mettre au point des médicaments inspirés des virus pour traiter les infections mais aussi d'autres maladies, tels que les cancers. Comment les cellules détectent-elles les virus? Lorsque les virus infectent les cellules et s'y répliquent, quel est le « non-soi » qui est détecté pour déclencher les réponses immunitaires ? Quel est le « soi » qui doit être toléré ? L'objectif du projet DIVIS est de découvrir de nouveaux mécanismes de détection virale, de comprendre leur régulation et d'amener ces découvertes sur la voie du développement clinique. La voie « cGAS-STING » de détection de l'ADN, composant du système immunitaire inné, s'est imposée ces dernières années comme la principale voie de détection des virus dans le cytoplasme des cellules. Son importance pour l'immunité anticancéreuse, l'inflammation et le vieillissement est aujourd'hui reconnue. Aujourd'hui, certains travaux émergents expliquent comment cette voie peut également servir à la détection des virus dans le noyau des cellules. À travers le projet DIVIS, les mécanismes de détection virale par cGAS-STING dans le noyau cellulaire seront étudiés. Le projet fera la lumière sur les mécanismes qui reconnaissent le soi/non-soi dans le noyau cellulaire et fera progresser notre compréhension de l'immunité antivirale, avec de vastes applications potentielles (immunité anticancéreuse, inflammation, vieillissement).

Nicolas Manel

Nicolas Manel est directeur de recherche à l'Inserm et dirige le laboratoire d'Immunité Innée à l'Institut Curie à Paris. Docteur en biologie cellulaire et virologie (Université de Montpellier, 2005), il a poursuivi un postdoctorat en immunologie à l'Université de New York. Ses recherches portent sur les mécanismes par lesquels les cellules immunitaires distinguent le soi du non-soi, notamment dans le contexte des infections virales, des cancers et du vieillissement. Il développe également les applications de ses travaux à l'immunothérapie. Auteur de plus de 80 publications scientifiques, il est également inventeur de plusieurs brevets, cofondateur de la biotech Stimunity, et lauréat de nombreux prix prestigieux, dont ceux de l'Académie des sciences et de la Ville de Paris.

FIDELIO

Destin des cellules infectées in vivo : mécanismes et conséquences

Compte tenu des conséquences sanitaires et économiques des infections, il est essentiel de mieux comprendre leurs mécanismes, afin de mieux les contrôler et les traiter. La microbiologie cellulaire a largement fait progresser notre compréhension de la biologie des infections. Cependant, de nombreuses inconnues subsistent concernant les mécanismes par lesquels les infections se déroulent in vivo, c'est-à-dire au sein même d'un être vivant infecté. Le trafic, la dynamique, ainsi que le devenir des microbes et des cellules infectées en fonction du type cellulaire, au cours de l'infection en particulier, demeurent inconnus. Sur la base de données expérimentales, le projet Fidelio émet l'hypothèse que ces processus sont des déterminants essentiels de l'évolution de l'infection. Pour tester cette hypothèse, FIDELIO propose de déterminer au sein de l'hôte infecté la dynamique et le devenir de la population bactérienne, de générer un atlas des cellules infectées et de caractériser l'évolution spatio-temporelle de ces cellules au cours de l'infection. Le projet atteindra ces objectifs ambitieux en utilisant la bactérie Listeria comme pathogène modèle, en suivant une approche multidisciplinaire et intégrative, alliant des modèles d'infection ex vivo et in vivo à une cohorte unique de patients atteints de listériose. En plaçant l'infection dans le contexte spatio-temporel dans lequel elle se déroule, les rôles respectifs du pathogène et du devenir des cellules infectées dans le processus infectieux à court et long terme seront identifiés. Ce projet apportera une nouvelle dimension à la compréhension de la biologie des infections et pourra contribuer à l'identification de nouvelles stratégies pour améliorer le traitement des infections et prévenir leurs séquelles à long terme.

Marc Lecuit

Marc Lecuit est médecin et chercheur, spécialiste des maladies infectieuses. Il est directeur de l'unité de biologie de l'infection à l'Institut Pasteur et l'Inserm, professeur de médecine à l'Université Paris Cité et chef adjoint du service des maladies infectieuses et tropicale de l'hôpital universitaire Necker-Enfants Malades. Ses recherches portent sur la compréhension des mécanismes moléculaires des processus infectieux. Son laboratoire concentre ses études sur les infections causées par agents pathogènes capables de traverser les barrières de l'hôte et de provoquer des infections digestives, materno-fœtales et du système nerveux central. Il apporté d'importantes contributions à la compréhension de la biologie des infections causées par la bactérie Listeria monocytogenes, ainsi que par des pathogènes émergents tels que les virus chikungunya, Zika et SARS-CoV-2. Il est membre de l'EMBO, de l'Academia Europaea, de l'Académie européenne de microbiologie et membre sénior de l'Institut universitaire de France.

HUMAN-ARCHAEA

Élucider les acteurs clés de la croissance cellulaire et de la division chez les archées associées à l'homme

Largement connus comme micro-organismes prospérant dans des environnements extrêmes, les archées sont également des composants stables du tractus gastro-intestinal (GIT) animal et humain, comprenant la bouche, le pharynx, l'œsophage, l'estomac, l'intestin grêle et le gros intestin. Malgré la reconnaissance croissante de l'importance des archées présents dans le GIT, nous manquons de connaissances sur les aspects les plus essentiels de leur biologie. Comment ces archées grandissent, se divisent et construisent leur paroi ? Le projet HUMAN-ARCHAEA vise à étudier les voies et les mécanismes responsables de la croissance et de la division cellulaire de ces bactéries, et notamment de Methanobrevibacter smithii (M. smithii), la principale espèce du microbiome humain. Contrairement à la plupart des archées, M. smithii possède une paroi cellulaire constituée d'un type unique de peptidoglycane (nommée pseudomuréine), dont l'origine évolutive est mystérieuse. Curieusement, ces archées manquent de composants des voies et machineries connues pour être essentielles à la croissance et à la division des bactéries. Cela suggère l'existence de processus totalement nouveaux qui restent à découvrir. Les résultats du projet HUMAN ARCHAEA produiront des informations sans précédent sur la biologie des archées du GIT, ouvrant ainsi un tout nouveau champ d'investigation. En découvrant de nouveaux composants impliqués dans les étapes vitales du cycle cellulaire, le projet aura un fort impact sur de nombreux domaines de recherche, notamment les aspects fondamentaux (biologie cellulaire des archées, évolution de l'enveloppe), la santé humaine et animale (microbiome, interactions hôte-archées), avec un fort impact sociétal (atténuation des émissions de méthane).

Simonetta Gribaldo

Simonetta Gribaldo est professeure titulaire et chef de l'Unité « Biologie évolutive de la cellule microbienne » au Département de Microbiologie de l'Institut Pasteur de Paris. Spécialiste de l'évolution et diversité des microorganismes, elle se voit attribuer une Chaire d'excellence pour son projet intitulé « Human-Archaea : Elucidating key players in cell growth and division of human-associated archaea ». Les Archaea, souvent considérés comme des microorganismes vivant dans les milieux extrêmes, sont également des composants stables du microbiote gastro-intestinal humain et animal. Grâce à une combinaison d'approches in silico et expérimentales, Simonetta Gribaldo et son équipe visent à identifier les voies et machineries impliquées dans la synthèse de la paroi cellulaire et son incorporation lors de la croissance et de la division. Ce projet devrait apporter des éclairages inédits sur la biologie des archées du microbiote, ouvrant ainsi un nouveau champ de recherche avec des implications pour la santé humaine et animale.

Thérapies ciblées pour les patients porteurs de malformations vasculaires secondaires à une mutation somatique de KRAS

Les malformations artérioveineuses (MAV) sont causées par des mutations génétiques, qui peuvent être soit héréditaires, et donc potentiellement transmises dans la famille, soit somatiques c'est-à-dire sporadiques lorsqu'elles sont acquises au cours du développement embryonnaire. Dans les formes sporadiques, des mutations activatrices du gène KRAS sont fréquemment observées, en particulier dans les MAV impliquant la vascularisation cérébrale. Les mécanismes d'apparition et de progression des MAV induites par des mutations somatiques du gène KRAS ne sont pas bien caractérisés, et il n'existe actuellement aucun traitement approuvé pour ces malformations. Les mutations du gène KRAS sont couramment identifiées dans les malformations vasculaires mais aussi dans les cancers, ce qui offre une opportunité de repositionnement de médicaments développés pour l'oncologie pour les patients présentant des malformations vasculaires induites par KRAS. L'objectif du projet KRASY est de transformer la prise en charge médicale des patients atteints de MAV consécutifs à une KRAS. De nouveaux modèles précliniques de MAV induites par des mutations KRAS seront développés, les mécanismes de développement et de progression de ces malformations seront étudiés, enfin de nouvelles thérapies ciblées seront identifiées pour offrir une médecine ultra personnalisée aux patients.

Guillaume Canaud

Guillaume Canaud est professeur de médecine à l'hôpital Necker-Enfants Malades (Paris), responsable de l'Unité de Médecine Translationnelle et Thérapies Ciblées. Il dirige également le laboratoire du même nom au sein de l'Institut Necker Enfants Malades. Guillaume et son équipe sont spécialisés dans la prise en charge de pathologies génétiques complexes dites en mosaïques associées à des malformations et des anomalies vasculaires. Ils développent des modèles précliniques de ces pathologies, décortiquent les mécanismes de développement des malformations et essaient d'identifier des traitements adaptés. Grâce à cette approche ils ont identifié une molécule inhibitrice d'une protéine (PIK3CA) comme étant prometteuse pour un groupe de pathologies rares (syndromes de CLOVES et apparentés). Ils ont démontré son efficacité in vitro, in vivo puis chez l'homme permettant d'obtenir une autorisation de mise sur le marché américain pour ce médicament en un temps record (3 ans et 10 mois). Ils s'intéressent à de multiples autres pathologies et continuent de proposer des thérapies ultra innovantes lui permettant d'avoir une reconnaissance internationale majeure comme en témoigne les nombreux prix et récompenses obtenus. Ce nouveau financement va leur permettre de développer de nouvelles approches très prometteuses pour les patients atteints de malformations artérioveineuses.

MicroProtect

Décrypter les fonctions neuroprotectrices des microglies : du développement cérébral aux maladies neurodégénératives

Les microglies sont des cellules présentes dans le système nerveux central. En adoptant divers états transcriptionnels et cellulaires, ces cellules jouent des rôles essentiels dans la physiologie cérébrale et la compréhension des causes d'un grand nombre de maladies neurologiques et psychiatriques, depuis le développement jusqu'à la neurodégénérescence. Comprendre comment ces états influencent la santé des circuits cérébraux tout au long de la vie représente un défi majeur, avec un potentiel thérapeutique considérable. Dans des modèles murins de maladies neurodégénératives et de lésions, ainsi que chez les patients, les microglies adoptent un état transcriptionnel et cellulaire particulier appelé « microglies associées aux maladies » (MAM). Ces microglies jouent un rôle neuroprotecteur majeur, notamment en éliminant les débris et les agrégats de protéines nocives. Un parallèle remarquable a été mis en évidence : un état microglial similaire aux MAM, nommé ATM, est présent durant le développement prénatal en conditions physiologiques. Les ATM prénatales et les MAM partagent des voies moléculaires convergentes pour exercer leurs fonctions neuroprotectrices, révélant une conservation fonctionnelle, du développement à la neurodégénérescence. Les travaux du projet MicroProtect permettront de générer des avancées scientifiques majeures et inédites sur les fonctions des états microgliaux en conditions physiologiques et pathologiques, enrichissant notre compréhension de la biologie de ces cellules immunitaires essentielles. Le projet ouvrira la voie à de nouvelles stratégies thérapeutiques exploitant les fonctions neuroprotectrices des microglies afin de promouvoir la santé cérébrale tout au long de la vie et dans un large éventail de conditions pathologiques.

Sonia Garel

Sonia Garel est neurobiologiste du développement. Ses recherches portent sur les mécanismes qui contrôlent la chorégraphie de l'assemblage des circuits cérébraux au cours du développement précoce. Elle s'intéresse en particulier aux microglies, des cellules immunitaires présentes dans le cerveau, et à la manière dont elles interagissent avec les neurones, le système immunitaire et l'environnement pour façonner les circuits cérébraux. Elle cherche également à comprendre comment des perturbations de ces processus précoces peuvent contribuer à l'émergence de troubles neurologiques ou psychiatriques. Après un doctorat en biologie du développement à Paris, elle a effectué un post-doctorat à l'Université de Californie à San Francisco (UCSF). Elle a ensuite rejoint l'Institut de Biologie de l'École Normale Supérieure (IBENS), où elle dirige depuis 2008 l'équipe « Développement et plasticité du cerveau ». Nommée Professeure au Collège de France en 2020 sur la chaire « Neurobiologie et immunité », elle y est désormais également installée au sein du Centre interdisciplinaire de recherche en biologie (CIRB). Ses travaux sont régulièrement distingués au niveau national et international. Sonia Garel est membre de l'EMBO et de l'Académie des sciences.

JULIEN PRUDENT UNIVERSITÉ DE CAMBRIDGE (UK) MOBILITÉ VERS L'INSTITUT IMAGINE, NECKER ENFANTS MALADES, PARIS

MitoDNA-QC

Investigation de l'interaction entre le contrôle qualité de la membrane interne mitochondriale, les niveaux d'ADNmt et l'hétéroplasmie

Les mitochondries sont des petites structures présentes dans nos cellules qui jouent un rôle crucial : elles produisent l'énergie dont nos cellules ont besoin pour fonctionner et prennent part à des décisions importantes pour la survie des cellules. Les mitochondries ont leur propre ADN, appelé ADN mitochondrial (ou ADNmt). Cet ADN contient des instructions essentielles pour produire l'énergie. Mais parfois, cet ADN peut être altéré. On parle alors d'hétéroplasmie, c'est-à-dire qu'une cellule contient à la fois de l'ADNmt normal (sauvage) et de l'ADNmt modifié (mutant). Quand le nombre total de copies d'ADNmt diminue ou que la proportion d'ADNmt mutant devient trop élevée, cela peut entraîner des maladies, comme des troubles mitochondriaux, des maladies neurodégénératives, certains cancers, ou encore accélérer le vieillissement. Ce projet de recherche vise à mieux comprendre comment le corps régule cet ADN mitochondrial, en particulier comment il contrôle la qualité des mitochondries et équilibre les formes normales et mutantes de l'ADNmt. En découvrant de nouveaux mécanismes et en explorant leur utilité pour des traitements, ce programme espère ouvrir la voie à de nouvelles approches thérapeutiques contre les maladies liées à l'ADNmt, les myopathies ou maladies génératives notamment.

Julien Prudent

Julien Prudent a obtenu une maîtrise en biochimie (2007) et un doctorat en biologie cellulaire (2011) à l'Université Claude Bernard Lyon I (Lyon, France). Durant son doctorat au sein du laboratoire du professeur Germain Gillet, il a étudié le rôle des protéines Bcl-2 dans la signalisation calcique au cours du développement embryonnaire du poisson zèbre. Il a rejoint le laboratoire du professeur Heidi McBride à l'Université McGill (Montréal, Canada) en tant que chercheur postdoctoral en 2013 pour étudier l'interaction entre la dynamique mitochondriale, les sites de contact membranaire et l'homéostasie cellulaire. En 2016, il a créé son groupe de recherche indépendant au sein de l'unité de biologie mitochondriale du laboratoire de biologie moléculaire (MRC) de l'Université de Cambridge (Cambridge, Royaume-Uni).

MoDiNIMaD

Dissection moléculaire du maintien et de la dégénérescence de l'identité neuronale

Les neurones sont des cellules à longue durée de vie, qui ne se divisent pas et doivent rester fonctionnelles pendant de longues périodes - des décennies chez l'homme. La manière dont les neurones accomplissent cet exploit remarquable est mal comprise. À ce jour, le domaine de la neurobiologie développementale s'est principalement concentré sur les premières étapes du développement neuronal, faisant ainsi progresser considérablement notre compréhension de la neurogenèse et de l'assemblage des circuits. Cependant, l'accent mis sur le développement précoce s'est fait aux dépens de la compréhension des mécanismes moléculaires contrôlant les étapes finales de la différenciation neuronale, au cours desquelles les neurones post-mitotiques acquièrent leurs caractéristiques fonctionnelles, telles que la synthèse des neurotransmetteurs (NT), des substances qui permettent aux neurones de communiquer, l'activité électrique et les propriétés de signalisation. En outre, les mécanismes qui assurent le maintien de ces caractéristiques tout au long de la vie restent largement inconnus. Les études de génétique humaine suggèrent fortement un rôle causal des sélecteurs terminaux - des facteurs de transcription (TF) conservés au cours de l'évolution - dans divers troubles neurodéveloppementaux et neurologiques. Le projet MoDiNIMAD se concentre spécifiquement sur les motoneurones (MN), une population neuronale ciblée par des troubles humains dévastateurs tels que l'amyotrophie spinale et la sclérose latérale amyotrophique.

Paschalis Kratsios

Paschalis Kratsios est un neurobiologiste du développement. Après avoir étudié la biologie moléculaire et la génétique à l'Université Démocrite de Thrace, il a effectué son doctorat en biologie du développement au Laboratoire Européen de Biologie Moléculaire (EMBL) à Rome. Lors de son postdoctorat à l'Université Columbia à New York, il s'est tourné vers le domaine des neurosciences du développement. En 2016, il a fondé son propre laboratoire à l'Université de Chicago afin d'étudier les motoneurones – des cellules spécialisées du système nerveux qui contrôlent le mouvement. Son laboratoire adopte une approche unique combinant les atouts spécifiques de trois systèmes modèles (C. elegans, souris et technologie des cellules souches humaines) pour faire progresser notre compréhension moléculaire du développement et des maladies des motoneurones. En se concentrant sur les motoneurones, une population neuronale ciblée par des maladies humaines dévastatrices, telles que la sclérose latérale amyotrophique (SLA), son équipe cherche à révéler des mécanismes applicables à d'autres types de neurones affectés par des troubles neurodéveloppementaux ou neurodégénératifs. Son travail a été reconnu par l'obtention de subventions et de prix très compétitifs. Le Dr Kratsios est éditeur-réviseur pour la revue eLife et évalue également des demandes de financement pour divers organismes à travers le monde. Tout au long de sa carrière, il a encadré des étudiants en master, des doctorants et des postdoctorants, et rend régulièrement visite à des lycées pour inspirer la prochaine génération à poursuivre une carrière dans les sciences.

ND-VASC

Déterminer les mécanismes moléculaires et cellulaires de la contribution vasculaire aux maladies neurodégénératives

La démence touche plus de 57 millioins de personnes dans le monde. La plupart des cas de démence dans la population sont dus à des lésions vasculaires et neurodégénératives (ND). Ces deux types de dommages s'aggravent souvent mutuellement. Parmi les causes vasculaires, la maladie des petites artères cérébrales (ou MPAC) est l'une des plus fréquentes. Cette maladie abîme les petits vaisseaux sanguins du cerveau et joue un rôle majeur dans l'apparition de troubles cognitifs et de démence. Pourtant, il n'existe aujourd'hui aucun traitement ciblant spécifiquement ses mécanismes. La recherche en génétique permet de mieux comprendre les causes profondes de ces maladies. Elle est aussi très utile pour trouver de nouvelles cibles thérapeutiques : lorsqu'un traitement repose sur une base génétique solide, les chances de réussite en essai clinique sont doublées. Mais pour en arriver là, il faut savoir précisément quels gènes sont impliqués et comment ils agissent dans les différentes cellules du cerveau. Le projet ND-VASC a pour objectif de mieux comprendre les mécanismes biologiques liés à la MPAC, qu'elle soit seule ou associée à d'autres maladies du cerveau. En utilisant des outils de pointe en génétique, en imagerie cérébrale et en analyse cellulaire, ce projet vise à découvrir de nouvelles pistes de traitement. En bref, ND-VASC veut ouvrir la voie à des thérapies plus efficaces pour réduire l'impact de la démence et favoriser un vieillissement cérébral en bonne santé.

Stéphanie Debette

Neurologue et épidémiologiste, Pr. Stéphanie Debette est une experte reconnue de l'épidémiologie génétique des maladies vasculaires cérébrales accidents vasculaires cérébraux, maladie des petits vaisseaux cérébraux (MPVC) notamment. Depuis 2025, elle dirige l'Institut du Cerveau, où elle co-dirige aussi une équipe de recherche. Elle y développe des synergies avec l'institut pour la santé vasculaire cérébrale (VBHI) qu'elle a fondé à l'université et au CHU de Bordeaux, où elle est professeure des universités - praticienne hospitalière (PU-PH) jusqu'à son transfert à Sorbonne Université et l'AP-HP en septembre 2026. En combinant des approches génomiques et multiomiques avec de l'imagerie cérébrale à grande échelle, tout au long de la vie, les travaux qu'elle a coordonnés ont révélé divers mécanismes moléculaires de la maladie des petits vaisseaux cérébraux, dont certains pourraient intervenir très précocement, possiblement dès le développement. Ses recherches, menées au sein de grandes collaborations internationales, ont identifié plus de 150 gènes et signatures protéiques circulantes associées au risque de MPVC, d'AVC et de démence. Elles ont démontré des liens causaux entre MPVC et maladie d'Alzheimer, et proposé de nouvelles cibles thérapeutiques, certaines ouvrant des opportunités de repositionnement thérapeutique. Elle œuvre à promouvoir une meilleure représentation de populations diverses, indispensable pour l'émergence d'une médecine de précision équitable. Elle a publié environ 300 articles et a obtenu divers financements compétitifs (ERC, RHU, IHU, JPND, H2020). Lauréate de plusieurs prix nationaux et européens, dont le Grand Prix de l'Inserm en 2024, elle a été élue membre de l'Académie des sciences en 2024.

PlankDiv

Diversification du plancton eucaryote océanique

Le plancton océanique regroupe une vaste diversité d'organismes, indispensables au cycle du carbone, à la régulation du climat et au bon fonctionnement des écosystèmes marins. Certaines espèces peuvent aussi être à l'origine de blooms toxiques (proliférations), menaçant la santé des écosystèmes, des animaux et des humains. Un défi biologique majeur consiste à comprendre les mécanismes qui génèrent et maintiennent la diversité planctonique dans les océans. Deux limites principales sont le manque de données (phylo)génétiques robustes pour la plupart des groupes de plancton, et le manque d'outils de modélisation conçus pour explorer la diversification au sein de l'océan, continuellement façonné par les courants. Le projet PlankDiv propose ici de caractériser les mécanismes de diversification des principaux groupes de plancton eucaryote océanique en exploitant trois ressources principales : i) des campagnes d'échantillonnage récentes menées à l'échelle mondiale, ii) les technologies émergentes de séquençage long-read et iii) le développement d'outils de modélisation innovants. Ce projet va permettre, pour la première fois, de comparer l'évolution des grands groupes de plancton eucaryote (des cellules complexes comme celles des animaux ou plantes), en étudiant à la fois les petits changements à court terme et les grands processus évolutifs à long terme grâce à un accès privilégié à des échantillons uniques, à un réseau de collaborations étendu et à une expertise de premier plan en phylodynamique. Les résultats du projet plankDiv permettront de mieux comprendre les mécanismes sous-jacents à la diversité du plancton dans les océans mondiaux.

Hélène Morlon

Hélène Morlon est directrice de recherche au CNRS. Son équipe de recherche étudie les processus écologiques et évolutifs qui façonnent et maintiennent la biodiversité. Après une formation en mathématiques, elle effectue une thèse en sciences de l'environnement à l'université de Bordeaux, puis deux postdoctorats aux États-Unis où elle se spécialise dans la modélisation de la biodiversité : dans le laboratoire de Jessica Green à l'Université de Californie, Merced, elle étudie la biogéographie globale des microorganismes du sol, et les mécanismes d'assemblage dans des communautés écologiques ; dans les laboratoires de Joshua Plotkin et Matthew Potts aux Universités de Pennyslvanie, Philadelphie et de Californie, Berkeley, elle étudie les processus de diversification à l'échelle macroévolutive. Recrutée au CNRS en 2010 en section interdisciplinaire, elle rejoint de le Centre de Mathématiques Appliquées de l'École Polytechnique. En 2014, elle crée l'équipe « Modélisation de la Biodiversité » au sein de l'Institut de Biologie de l'ENS avec un soutien de l'ANR (Chaire d'Excellence) et de l'ERC (Consolidator Grant)

TranSpot

Révéler les mécanismes de transvection dans la régulation des gènes sexuellement dimorphiques liés au chromosome X

L'expression des gènes - c'est-à-dire la façon dont l'information contenue dans notre ADN est utilisée - est généralement contrôlée par des séquences appelées « régions régulatrices », situées près des gènes. Mais il existe un phénomène moins connu, appelé transvection, qui joue aussi un rôle important. La transvection se produit lorsque deux copies d'un même gène (une venant du père, l'autre de la mère) interagissent directement pour réguler l'activité du gène. Ce mécanisme a été observé chez différents organismes, de la levure aux mammifères, et pourrait être impliqué dans certaines maladies. Pourtant, nous comprenons encore mal comment il fonctionne exactement. Le projet TranSpot cherche à mieux comprendre la transvection, en particulier dans le cas des gènes qui s'expriment différemment chez les mâles et les femelles – comme ceux portés par les chromosomes sexuels (XX chez les femelles, XY chez les mâles). La transvection nécessite une proximité étroite entre les allèles pour une interaction fonctionnelle, mais la distance physique précise, la dynamique temporelle et les conséquences de cette interaction restent mal comprises. Pour répondre à ces questions fondamentales, et atteindre ses objectifs, de puissants outils génétiques disponibles chez la drosophile seront employés ainsi que des techniques d'imagerie quantitative pour analyser la transcription dans les tissus fixés et vivants à la plus haute résolution possible. Le projet TranSpot a le potentiel de mettre en lumière le phénomène largement inexploré de la transvection, en fournissant des informations cruciales sur la manière dont l'organisation spatiale du génome diploïde influence sa régulation.

© FLORENT KOLANDJIAN

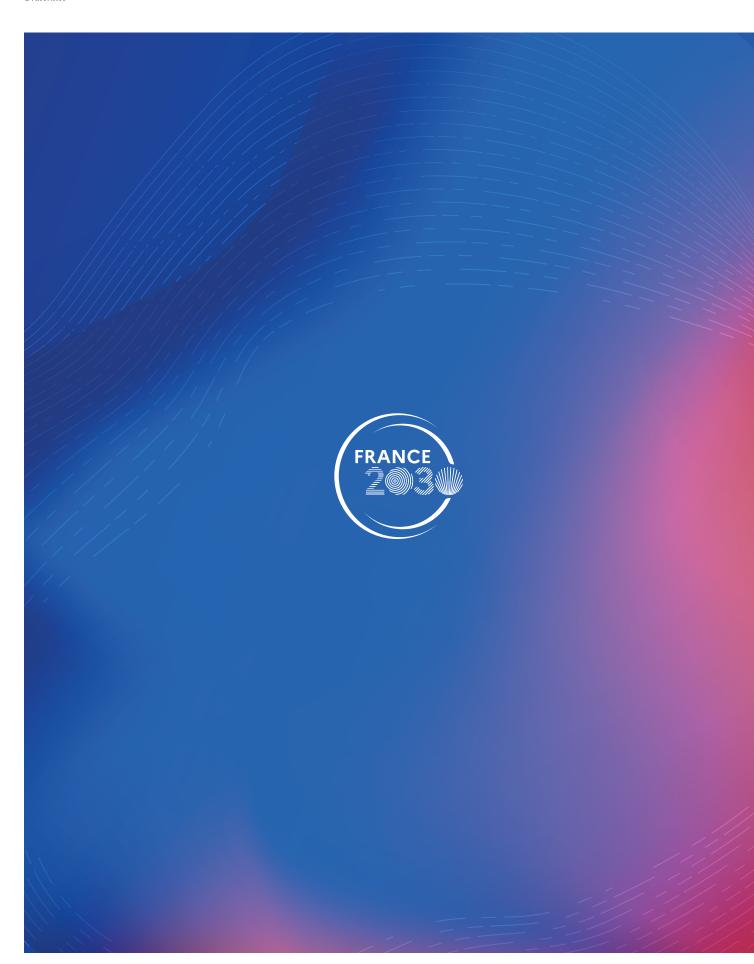
Benjamin Prud'homme

Benjamin Prud'homme est directeur de recherche au CNRS, et responsable d'équipe à l'Institut de Biologie du Développement de Marseille (IBDM) depuis 2007. Il s'intéresse depuis plus de 20 ans aux mécanismes génétiques à l'origine des changements évolutifs de la morphologie et des comportements, en particulier chez les insectes. Il a réalisé sa thèse au Centre de Génétique Moléculaire (CNRS, Gif s/ Yvette) durant laquelle il a étudié la formation des segments du corps chez un ver marin. Son post doc à l'université du Wisconsin (Madison, États-Unis) lui a permis de se tourner vers des aspects plus moléculaires de la régulation des gènes, en lien avec l'évolution des motifs pigmentaires des ailes des mouches drosophiles. Les travaux de l'équipe de Benjamin Prud'homme ont mis en évidence le rôle majeur de l'évolution des séquences régulatrices contrôlant l'expression des gènes dans les changements morphologiques entre espèces. Plus récemment, son équipe a révélé le rôle de la communication entre des gènes portés par les chromosomes sexuels dans la formation de caractères qui diffèrent entre les mâles et les femelles. Enfin, son équipe étudie l'évolution du comportement de ponte de la mouche invasive Drosophila suzukii, un ravageur agricole qui, contrairement à la plupart des autres espèces de drosophiles, pond ses œufs dans les fruits en cours de maturation

NATHALIE ROCHEFORT UNIVERSITÉ D'EDINBURGH (UK) MOBILITÉ VERS L'INSTITUT DE LA VISION, SORBONNE UNIVERSITÉ, PARIS

VisionInAction

Encodage des images naturelles de la rétine au cortex visuel


L'adaptation constante à l'environnement est essentielle à la survie. Pour s'adapter efficacement, les systèmes sensoriels modulent leurs réponses pour améliorer les comportements, comme se concentrer sur les stimuli pertinents tout en ignorant les distractions. Chez les espèces animales, ces systèmes sensoriels ont évolué pour tenir compte non seulement des caractéristiques physiques des stimuli, mais aussi du contexte dans lequel ils sont perçus. Dans le cerveau, les réactions des neurones à ce que nous voyons sont influencées par ce contexte, mais on ne comprend pas encore très bien comment ces informations sont codées, depuis la rétine jusqu'au cortex. Le projet VisionInAction utilise des outils d'intelligence artificielle pour étudier comment les images naturelles sont traitées par le cerveau, et comment les populations de neurones forment des représentations à la fois précises et sensibles au contexte. Ce travail pourrait aider à créer des thérapies pour restaurer la vision après des lésions cérébrales ; en comprenant mieux comment les stimuli naturels sont encodés, il sera possible de concevoir des prothèses cérébrales plus performantes pour produire des perceptions plus riches et réalistes. Comparer les représentations neuronales biologiques à celles des réseaux artificiels pourrait aussi approfondir notre compréhension des modèles d'intelligence artificielle générative. Ce projet pourrait ainsi contribuer aux progrès conjoints des neurosciences et de l'intelligence artificielle, en participant à l'expansion de la « NeuroIA », un domaine émergent qui explore les liens entre neurosciences et intelligence artificielle pour mieux comprendre les mécanismes de la perception et des systèmes intelligents.

Nathalie Rochefort

Nathalie Rochefort est une neuroscientifique qui étudie les bases neuronales de la perception visuelle. Après des études de biologie et d'épistémologie à Paris, elle obtient un doctorat européen en neurosciences (Université Paris-VI et Ruhr-Universität-Bochum), suivi d'un post-doctorat à l'Université technique de Munich. Ses travaux ont permis de mieux comprendre comment les neurones du cortex visuel acquièrent leurs propriétés fonctionnelles. Ils ont également contribué au développement de l'imagerie calcique in vivo à deux photons, aujourd'hui largement utilisée en neurosciences. Son équipe de recherche explore comment les circuits neuronaux du cerveau traitent les informations visuelles et comment l'expérience les modifie durablement. Elle a reçu de nombreuses distinctions, dont le Bernard Katz Lecture Award, le Schilling Research Award (Société allemande de neurosciences), Sir Henry Dale (Wellcome Trust et Royal Society), et un financement ERC Consolidator.

