CE21 - Alimentation et systèmes alimentaires

High-throughput screening tools for a reinforced chemical safety surveillance of food – SENTINEL

Submission summary

The European Parliament has called on Member States to strengthen their food safety control mechanisms by 2019. In July 2018, the French government has launched a platform to strengthen the coverage and the efficiency of the surveillance. To reach this objective, it is necessary for both food safety authorities and industry to get high-throughput and cost effective screening methods to monitor priority hazards throughout the food chain. Over the past few years, there has been substantial progress in microbiological safety and fast and cheap PCR-based methods are now currently used by regulatory authorities for inspection and by manufacturers for self-monitoring. On the chemical safety side, technical and societal transition is lagging behind. The current French system is reliant on : 1/ Surveillance and inspection plans which are used to detect non-conformities i.e. above the maximum level (ML) for a given contaminant /food couple and 2/ National total diet studies which are implemented every 5 years to assess the risk related to the global chronic dietary exposure of consumers to sub-ML doses of contaminants. Due to the very low ML of most priority contaminants, both approaches revolves mainly around very sensitive reference methods which are often expensive and low-throughput, thus limiting frequency and scope of surveillance by food safety authorities and dissuading routine preventive monitoring by the industry.

Starting with the surveillance of PCBs in meat as a model issue, SENTINEL's primary objective is to develop a panel of three complementary high-throughput, sensitive, cost-effective screening tools 1/ for strengthening the detection of non-conformities, but also 2/ for monitoring these contaminants at relevant sub-ML levels. When non-conformities (>ML) are detected, confirmatory analyses by approved laboratories will be requested prior to corrective action whereas detection above targeted sub-ML levels will lead to preventive actions carried on the food chain. With the final aim to better control consumer dietary exposure to these contaminants, the implementation of these novel tools should thus boost the screening of positive samples by food safety authorities (top-down approach) and permit sample self-monitoring by the agri-food industry (bottom-up approach). Recent advances in analytical sciences enable to meet this challenge in SENTINEL via three options: i) coupling highly-sensitive mass spectrometry-based methods with novel sample pooling strategies ii) coupling up-to-date contaminant-targeted biosensors with quick, efficient and cheap extraction methods and iii) designing sensors targeted on the detection of markers of animal exposure to contaminants discovered by omic approaches.

The second objective is to determine several practical and plausible implementation scenarios for the new tools, and to anticipate the main costs and benefits of their meat sector implantation. The project will experiment an original two-stage methodology, in order to improve the technological transfer from research to industry and to food safety authorities. First, the conditions of SENTINEL tool implementation will be defined on the basis of the most probable evolutions of the French meat supply chain. Second, the cost-benefit analysis (economic, regulatory, social, public health impacts) of these implementation scenarios will be performed to support future decisions for strengthening the surveillance of food chain chemical safety.

SENTINEL is a multidisciplinary collaborative research project that will prompt developments in the fields of residue chemistry, biosensors, e-nose, omics, chemometrics, bioinformatics, social and consumer sciences, risk assessment and knowledge engineering. SENTINEL involves 11 partners from 4 scientific institutes (INRA, INRIA, IRSTEA, CNRS), 2 educational and research institutions (Perpignan University, ONIRIS) and 1 technical institute (IFIP).

Project coordinator

Monsieur Erwan Engel (Qualité des Produits Animaux)

The author of this summary is the project coordinator, who is responsible for the content of this summary. The ANR declines any responsibility as for its contents.


INRIA GraphIK UMR IATE - Equipe GraphIK
MIA INRA UMR0518 MIA Mathématiques et Informatique Appliquées
BAE Biocapteurs-Analyse-Environnement
BOA Biologie des Oiseaux et Aviculture
SyMMES Systèmes Moléculaires et nano Matériaux pour l'Energie et la Santé (SyMMES)
StatSC Oniris, Unité de Statistique Sensométrie et Chimiométrie
Alimentation et Sciences Sociales
IRSTEA Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'AgricultureS AGRICOLES
QuaPA Qualité des Produits Animaux
INRA TOXALIM - AXIOM Institut National de la Recherche Agronomique Centre Toulouse - Occitanie

Help of the ANR 596,874 euros
Beginning and duration of the scientific project: March 2020 - 48 Months

Useful links

Sign up for the latest news:
Subscribe to our newsletter