In Western countries, diseases related to foods represent a major issue in public poliy. Overweight and obesity are increasing at an alarming rate in the world and in Europe more particularly. Obesity is one of the most serious public health problems because it increases significantly the risk of many chronic diseases such as cardiovascular disease and type 2 diabete. Nutrition is a major health determinant and is one of the key priorities in public health policy, especially in Europe. The comsumption of cereals-based foods with low glycemic indexes, high micronutrients and fibers contents are highly recommended. The target of this work, is to provide new solutions for cereal based foods: the knowledge and understanding on the in vivo fate will be used to define structural features to gain in foods.
The objective of this proposal is to use new genetic resources and to assess the role of the role of viscosity on gastric emptying and the kinetic aspects of starch digestion. The digestibility of starch in foods varies widely and can be affected by high content of viscous soluble dietary fiber constituents and relatively high amylose / amylopectine ratios. Amylose content also influences some functional properties of starches like swelling power, solubility, in vitro glycemic index and viscosity.
Thus, the strategy of this work is based upon the complementarity of the research teams and upon the integration of various scientific disciplines, from genetics of wheat grain to the human subject while passing by in vitro and animal studies. Natural biodiversity present in a core collection of bread wheat (Clermont-Ferrand) will be examined in order to bring out new wheat varieties containing high amylose contents. These varieties will be selected by the use of molecular and biochemical markers, by phenotyping using a new experimental device based upon image analysis of seeds sections, by biochemical analyses and by nutritional investigations. Viscosity of the ingested meal, gastric function in vivo and the nutritive impact of cereal products with high amylose content will be evaluated using an artificial stomach, a porcine model and a human panel.
Monsieur Benoit JAILLAIS (Organisme de recherche)
The author of this summary is the project coordinator, who is responsible for the content of this summary. The ANR declines any responsibility as for its contents.
Help of the ANR 456,642 euros
Beginning and duration of the scientific project:
- 36 Months