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Abstract – This work introduces a quantitative dynamic model for post-disaster response. It relies on locating facilities considering the 
social and health conditions of the population for a specific area. The objective is to minimize the impact on the population health due 
to the lack of supplies.  The model is positioned in terms of system resilience in its response component, but it can also be seen as a 
resourcefulness strategy for the aspect focused here (mortality rate).  
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1. Introduction 

The widespread natural disasters of the last years have 
highlighted the limits of traditional approaches to crisis 
management, often inspired by military expertise. In 
particular, the complexity of 21st century megacities and 
the unplanned growth in urban areas contribute to increase 
the exposure and vulnerability of population and vital 
infrastructures. Some cities with high population density 
such as Mexico City, Port-au-Prince, and Istanbul are 
located near fault zones. As a consequence they are 
considered as critical areas and an efficient response and 
recovering are suitable to reduce the number of victims and 
to alleviate the effects of massive population moves.  

The state of displaced populations may be an indicator 
to assess the recovery process, and thus the resilience. 
Several definition of resilience can be found in the 
literature [4][8][13]. A definition close to the approaches 
focused in this paper is proposed in [8] which define 
resilience as the capacity to mitigate risks, to reduce the 
disasters impact over population and infrastructures, and to 
improve the recovery process.  In terms of sociotechnical 
systems, the resilience can be assessed at both 
infrastructures and communities levels. The problem of 
communities’ resilience is usually modeled as a 
minimization of social disruption, economic losses and 
casualties. In this work, a quantitative dynamic model to 
post-disaster response in terms of system resilience is 
proposed. It consists in locating facilities to distribute 
supplies to the population after a disaster. The model takes 
into account the population health state, which plays a key 
role on the overall mortality rate.   

This work is organized as follows: a bibliographical 
review is done in Section 2. The problem is defined in 
Section 3. Then, a mathematical model and a strategy to 
solve it are respectively proposed in Section 4 and 5. 

Finally, some concluding remarks and perspectives are 
given in Section 6.  

2. Related work 

Several works in the literature deal with the quantitative 
models involved on resilience of systems. In spite of the 
limits of such approaches, considering the complexity 
involved in crisis management, they remain important to 
understand the whole process and to provide new solutions 
for overcoming some logistic challenges. We give below 
two main approaches and point out the position of the 
model in such concepts of system resilience.  

The resilience is seen in [14] as an emergent system 
property based on three main combined activities: 
preparedness, response and recovery (hence the PR2 
model).  The preparedness refers to anticipation strategies 
and operations in order to improve the intervention 
performance, whenever a major disaster occurs. The 
response involves the resources, strategies, and measures to 
overcome the immediate effects of a perturbation. The last 
component, the recovery, relies on the operations 
performed to restoration and rehabilitation areas affected 
by a major perturbation.   

The works [7][8] provide a four-dimensional 
framework for the system resilience evaluation, for which 
two dimensions correspond to quantitative measures to 
enhance resilience. These four components are: the 
robustness, the resourcefulness, the redundancy, and the 
rapidity (hence the R4 model). The robustness is related to 
the system capacity to absorb the impacts of a perturbation 
without suffering degradations. The redundancy is the extra 
resources availability which allows the service to be 
maintained even in case of perturbation. The 
resourcefulness is referred to the capacity to deploy 
resources such as financial, human and physical in order to 



 

 

satisfy pre-specified priorities and objectives. The rapidity 
is the system ability to return to an initial state after a major 
perturbation in reasonable delays and costs.  

Considering the PR2 framework presented in [14], the 
model proposed here is located on the response axis, while 
for the R4 model proposed in [8], our model is related to 
resourcefulness, and contributes to the rapidity.  

The Figure 1 presents a combined vision of resilience's 
parameters using the PR2 and R4 approaches and has been 
adapted from [12]. This figure points out the complexity of 
the notion of resilience of sociotechnical systems by 
highlighting the interdependency of the various parameters. 
For example, robustness and resourcefulness depend on the 
preparedness. The latter is impacted by response.  

Work [10] provides some theoretical bases to 
understand the interactions between these components and 
a global framework to assess the variations of the rapidity 
with respect to the resourcefulness. 

 

 

Figure 1: A cross view of resilience's parameters 
through the PR2 and R4 approaches. 

 
Quantitative models for designing the humanitarian 

logistics have recently been proposed in [1][3][11]. They 
focus on two key components: the location of warehouses 
and the routing system. Aside from the theoretical hardness 
of those core problems, additional features are also 
considered. Both the uncertainty on the data [1] and 
various evaluation criteria [11] increase the overall 
complexity of the problem. 

Some works have been focused on routing and 
distributing supplies to clusters areas as in [2][5][6]. The 
authors deal with a medium-long terms macro distribution. 
Some hypothesis have been considered such as the center 
sites distribution are known in advance and thus demands 
are leaved in a central facility for each clusters. Moreover, 
a fleet of vehicles is used, but the number of available 
vehicles is unknown à priori. Even if the authors do not 
focus on the benefits of such distribution in a resilience 
system, it may contribute in a medium-long term recovery 
phase. Very sophisticated heuristics and exact methods are 
proposed to solve the mentioned problem. 

3. Problem definition 

We consider a logistics operator in charge of providing 
humanitarian supplies to the population, immediately after 
a disaster has occurred. Those supplies can be of several 
types. In this work, the supplies consist of survival 
elements (food, water, medicine, etc). An initial amount of 
supplies is located at a central depot (it may increase over 
time, whenever additional amounts are available). A 
logistics distribution system has to be deployed to provide 
the survival elements to the population. It relies on 
transportation from the depot to distribution centers, 
storage at those centers and final distribution from the 
centers to the population. These centers do not exist a 
priori. They must be installed, requiring human, technical 
and financial resources. Such resources are limited in 
availability. Their limit is assumed to be fixed and known 
in advance. 

Since we focus on the immediate post-disaster aid, we 
are interested in optimizing the immediate benefit from the 
distributed aid. For example, the time horizon for the 
intervention is set to two weeks. Then, it is discretized over 
the days. The population is considered to be located in 
areas. Thus, for each area an initial amount of population is 
given, which can be collected through the existing 
databases on population and their densities. The local 
distribution centers are used to provide the supplies to the 
population. They are the last step in the humanitarian 
logistics system. Thus, they must be located in such a way 
the distance towards the populations areas is the shortest. 
They are not available right after a disaster but the 
potential sites to install a depot are supposed to be known 
in advance (maps and observation satellite photos) and 
correspond to standard locations in humanitarian aid like 
stadiums, large squares, and medium-to-large warehouses. 
Once a facility is opened, it is considered operational and 
will not close later on.  

Besides the decisions on where to install the local 
centers, one has to set the amount of survival elements to 
be delivered to each population area from each opened 
center each day. Both the center opening and the final 
distribution incur a cost, which has to stay below a given 
financial limit. The way the population needs are covered 
impact first on the population’s global health and impact 
the mortality. Second, they may induce population moves 
towards areas where food needs are better covered. Thus, 
Figure 2 illustrates how the standard resilience model from 
Figure 1 is adapted to our problem. The response time is 
set by the time periods considered and the population 
evolution depends on the way the supplies are distributed 
through the logistics system to build. 

 



 

 

 

Figure 2: An overview of system resilience to our 
problem. 

 

4. A mathematical model 
 
We propose a mathematical model which couples the 

humanitarian aid distribution with the mortality rate. The 
model uses components of facility location and distribution 
planning. Besides, the mortality rate is parameterized by 
the daily needs covering. Moreover, an initial inventory is 
supposed to be available just after the disaster and the 
model is indexed over the time. 

Let T be the number of time periods for the immediate 
humanitarian operations. It corresponds to the interval 
time, considered here in days, to provide a planning over 
the total period time. Let Q be the total amount of available 
supplies (e.g. food, water, etc. to be distributed), R be the 
available logistics resources (e.g. personals and materials 
to operate the network distribution system) and C be the 
total budget. Furthermore, J is the set of potential sites to 
set a distribution center (to store and to distribute supplies). 
For each site J and a given interval time, let Tj, Rj, Cj, and 
Qj be respectively the time required to open the site j, the 
resources needed, the operational costs, and the store 
capacity. Besides, for each population area i ∈ I and for 
each site j ∈ J, let Cij  be the cost to deserve area i from site 
j. Dik denotes the distance between areas i ∈ I and k ∈ I. 

The mathematical formulation makes use of resources 
and consumption constraints, and three sets of variables. 

The decision variables { }1,0∈t
iy  determine if a facility i 

is opened or not to the period of time t.  Variables 

0≥t
ijx specify the amount of supplies from area j to be 

distributed in area i in a time period t.  Moreover, variables 

0≥t
ip  correspond to a population measure to a site i in a 

time period t. Furthermore, function  f(r) measures the 
average mortality rate when r percent of the individual 
needs are covered, while function g(pi,ri,pj,rj) gives the 
relative attractiveness of areas i ∈ I and j ∈ J according to 
their respective population and individual needs coverings. 
Thus, the population evolution relies on functions f and g 
and the model is as follows: 
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The objective function (1) aims at maximizing the 
population size P at the end of the time period. Constraints 
(2) require each distribution center to be open at most 
once. Restrictions (3) limit the amount of resources used to 
open centers at any period of time. Supplies cannot be 
delivered from a center j that has not been already open, 
see Constraints (4). Constraint (5) sets the global financial 
limit. Restriction (6) limit the total amount of supplies 
distributed to the available quantity. The initial population 
size in each area is set in Equations (7). Equations (8) set 
the population evolution in each area at each period of 
time. The variable definition is given in (9), (10) and (11). 

This problem is NP-hard as it generalizes the location 
problem [9]. Moreover, it is non-linear due to the functions 
f and g. Thus, solving it exactly might require a too large 
time, even on small instances, in a context of crisis 
logistics. 

5. Proposed method 
 
We propose a master-slave method to compute solutions 

of good quality. In the master problem, the variables y on 
the opening dates for each distribution center are first 



 

 

computed using a global solver. This partial solution is 
then completed and evaluated by the slave. It consists in 
finding the best distribution plan x given the opening 
decisions y. The slave returns the best value P obtained 
given y as well as the violation on the constraints 
depending on y. This information is used by the global 
solver in the master to compute new opening dates, leading 
to the scheme in Figure 3. 

 

6. Concluding remarks and perspec-
tives  

 
This paper proposes an optimization approach of 

supplying population just after a disaster. This is an 
important organizational aspect in the emergency 
circumstances (response in PR2 framework), and 
contributes to the resourcefulness (R4 model).  The 
proposed model will first be validated on simulate date 
based on past disasters, and we also intend to test over real 
data.  In terms of rapidity aspects of resilience, the 
proposed modeling contributes to its quantification. Up-to-
now, the rapidity quantification is not well studied. But, it 
seems an interesting way to assess the resilience of the 
systems. This is why the mathematical approaches to 
optimize organizational aspects of the resilience needs to 
be investigated in complementarily with 
(tele)communication and social aspects (especially auto-
organization processes and High Reliable Organization 
processes). Consequently, the proposed modeling needs to 
be couple with other models to optimize the use of the 
deteriorated telecommunication systems, to understand and 
to improve social processes, and all the rebuilding 
processes.  
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